Abstract Hydrogen sulfide is produced by heterotrophic bacteria in anoxic waters and via carbonyl sulfide hydrolysis and phytoplankton emissions under oxic conditions. Apparent losses of dissolved cadmium (dCd) and zinc (dZn) in oxygen minimum zones (OMZs) of the Atlantic and Pacific Oceans have been attributed to metal‐sulfide precipitation formed via dissimilatory sulfate reduction. It has also been argued that such a removal process could be a globally important sink for dCd and dZn. However, our studies from the North Pacific OMZ show that dissolved and particulate sulfide concentrations are insufficient to support the removal of dCd via precipitation. In contrast, apparent dCd and dZn deficits in the eastern tropical South Pacific OMZ do reside in the oxycline with particulate sulfide maxima, but they also coincide with the secondary fluorescence maxima, suggesting that removal via sulfide precipitation may be due to a combination of dissimilatory and assimilatory sulfate reduction. Notably, dCd loss via precipitation with sulfide from assimilatory reduction was found in upper oxic waters of the North Pacific. While dissimilatory sulfate reduction may explain local dCd and dZn losses in some OMZs, our evaluation of North Pacific OMZs demonstrates that dCd and dZn losses are unlikely to be a globally relevant sink. Nevertheless, metal sulfide losses due to assimilatory sulfate reduction in surface waters should be considered in future biogeochemical models of oceanic Cd (and perhaps Zn) cycling.
more »
« less
Intermediate water circulation drives distribution of Pliocene Oxygen Minimum Zones
Abstract Oxygen minimum zones (OMZs) play a critical role in global biogeochemical cycling and act as barriers to dispersal for marine organisms. OMZs are currently expanding and intensifying with climate change, however past distributions of OMZs are relatively unknown. Here we present evidence for widespread pelagic OMZs during the Pliocene (5.3-2.6 Ma), the most recent epoch with atmospheric CO2analogous to modern (~400-450 ppm). The global distribution of OMZ-affiliated planktic foraminifer,Globorotaloides hexagonus, and Earth System and Species Distribution Models show that the Indian Ocean, Eastern Equatorial Pacific, eastern South Pacific, and eastern North Atlantic all supported OMZs in the Pliocene, as today. By contrast, low-oxygen waters were reduced in the North Pacific and expanded in the North Atlantic in the Pliocene. This spatially explicit perspective reveals that a warmer world can support both regionally expanded and contracted OMZs, with intermediate water circulation as a key driver.
more »
« less
- PAR ID:
- 10389787
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The formation of the Isthmus of Panama closed the Central American Seaway, severing the only Late Cenozoic low‐latitude connection between the Pacific and Atlantic Oceans. Here we clarify the Early Pliocene (5.3–3.6 million years ago [Ma]) sequence of events associated with the shoaling of the Central American Seaway based on differences in upper ocean biogeochemical properties between the eastern tropical North Pacific (ETNP) and the Caribbean Sea. Foraminifera‐bound nitrogen isotopes (FB‐δ15N) are elevated in the ETNP relative to the Caribbean Sea throughout the Early Pliocene. Whereas ETNP FB‐δ15N shows no long‐term trend across the Early Pliocene, FB‐δ15N in the Caribbean Sea declines by ∼0.5‰ between 4.6 and 4.5 Ma, and by an additional ∼1‰ between 4.35 and 4.25 Ma. We interpret the divergence between ETNP and Caribbean Sea FB‐δ15N to indicate progressive isolation of their subsurface nutrient pools due to CAS shoaling. The oxygen isotopic composition of seawater (δ18Osw) derived from planktonic foraminiferδ18O and Mg/Ca shows a small but variable gradient between the ETNP and Caribbean Sea over the Early Pliocene, with a trend toward a largerδ18Oswgradient after 4.25 Ma. We suggest that the development of persistent chemical differences in both thermocline nutrients and surface waters between the ETNP and Caribbean Sea after 4.1 Ma reflects the cessation of basin‐scale oceanic exchanges across the Central American Seaway.more » « less
-
Summary Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well‐studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10‐fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral‐encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico‐chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate‐critical environments.more » « less
-
Abstract In the Eastern Tropical North Pacific Oxygen Minimum Zone (ETNP‐OMZ), fish larvae undergo development amidst highly variable dissolved oxygen environments. As OMZs expand, understanding the implications of low‐oxygen environments on fish development becomes increasingly relevant for fisheries management and ecosystem modeling. Using horizontal zooplankton tows to track five oxygen levels (oxic [200 μmol/kg], hypoxic [100 μmol/kg] suboxic [10 μmol/kg], anoxic [<1 μmol/kg], and deep [10 μmol/kg at ~ 1000 m depth]), this study analyzed the three‐dimensional distribution of fish larvae and adults across the ETNP‐OMZ. Results revealed a wide midwater anoxic core, extending from Costa Rica to Baja California, that was almost devoid of fish larvae (< 1 larvae/1000 m3). Early larval stages primarily inhabited the oxic and hypoxic levels above the core, while postflexion and transformation stages occurred across a wider oxygen gradient, including the deep level below the anoxic core. Epipelagic species (e.g.,Auxissp.) were predominantly found in the surface oxic level, whereas coastal‐demersal species (e.g.,Bregmaceros bathymaster,Ophidionspp.) were prevalent in the hypoxic level above the core. Meso‐bathypelagic species (e.g.,Diogenichthys laternatus,Cyclothonespp.) were present throughout the study area, including below the anoxic core as transformation larvae and juveniles. These findings indicate that a vertical expansion of anoxic waters in OMZs could further constrain the habitat of epipelagic species, while also affecting the ontogenic vertical movements of meso‐bathypelagic species.more » « less
-
ABSTRACT Many coastal marine species experienced Pleistocene gene flow between the North Pacific and Atlantic. Understanding historical connectivity between ocean basins should aid in predicting how regional faunas will respond to recent warming that has intensified trans‐Arctic dispersal. Wetland fauna of the Northwestern Atlantic may have survived in estuarine refugia throughout glacial cycles, or recolonised from the southern coast, North Pacific or Northeastern Atlantic. Here, we used multilocus genetic markers and historical climate data to investigate lineage distribution and connectivity among populations of the nominally cosmopolitan sea slugAlderia modesta, sampled from mudflats on both coasts of the North Pacific and North Atlantic. Mitochondrial DNA clades from European and North American populations were deeply divergent and reciprocally monophyletic; differences at seven polymorphic nuclear loci indicated prolonged absence of trans‐Atlantic gene flow. A Pacific ancestor likely first colonised the Atlantic during the marine biotic interchange of the middle Pliocene ~3.5 Ma. Both mtDNA phylogenetics and nuclear genotype assignments support repeated trans‐Arctic colonisation of the Northwestern Atlantic from the Pacific during inter‐glacial cycles; no gene flow was evident since the last glacial maximum, however. Time‐calibrated coalescent phylogenies, Bayesian skyline plots and haplotype networks all indicated recent population expansions in the Pacific and Europe, but not Northwestern Atlantic. In both the Pacific and Northwestern Atlantic, older lineages persisted in patchy refugia north of glacial margins, while a derived clade of Pacific haplotypes indicates northward post‐LGM expansion. The biogeographical history ofAlderiacontrasts with rocky‐shore taxa that were largely extirpated by glacial advance and recolonised from refugia following the last glacial maximum. Based on molecular differences and distinctions in radular and penial stylet morphology, we resurrect the nameAlderia harvardiensisGould 1870 forAlderiafrom the Northwestern Atlantic and North Pacific;A. modestarefers exclusively to European slugs.more » « less
An official website of the United States government
