skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical Detection by Analyte-Induced Change in Electrophoretic Deposition of Gold Nanoparticles
The electrophoretic deposition (EPD) of citrate-stabilized Au nanoparticles (cit-Au NPs) occurs on indium tin oxide (ITO)-coated glass electrodes upon electrochemical oxidation of hydroquinone (HQ) due to the release of hydronium ions. Anodic stripping voltammetry (ASV) for Au oxidation allows the determination of the amount of Au NP deposition under a specific EPD potential and time. The binding of Cr 3+ to the cit-Au NPs inhibits the EPD by inducing aggregation and/or reducing the negative charge, which could lower the effective NP concentration of the cit-Au NPs and/or lower the electrophoretic mobility. This lowers the Au oxidation charge in the ASV, which acts as an indirect signal for Cr 3+ . The binding of melamine to cit-Au NPs similarly leads to aggregation and/or lowers the negative charge, also resulting in reduction of the ASV Au oxidation peak. The decrease in Au oxidation charge measured by ASV increases linearly with increasing Cr 3+ and melamine concentration. The limit of detection (LOD) for Cr 3+ is 21.1 ppb and 16.0 ppb for 15.1 and 4.1 nm diameter cit-Au NPs, respectively. Improving the sensing conditions allows for as low as 1 ppb detection of Cr 3+ . The LOD for melamine is 45.7 ppb for 4.1 nm Au NPs.  more » « less
Award ID(s):
2004169
PAR ID:
10389798
Author(s) / Creator(s):
;
Publisher / Repository:
Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
169
Issue:
1
ISSN:
0013-4651
Page Range / eLocation ID:
016504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles) Rodolphe Antoine (Ed.)
    This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine. 
    more » « less
  2. null (Ed.)
    Incorporating nanoparticles into devices for a wide range of applications often requires the formation of thick films, which is particularly necessary for improving magnetic power storage, microwave properties, and sensor performance. One approach to assembling nanoparticles into films is the use of electrophoretic deposition (EPD). This work seeks to develop methods to increase film thickness and stability in EPD by increasing film-substrate interactions via functionalizing conductive substrates with various chelating agents. Here, we deposited iron oxide nanoparticles onto conductive substrates functionalized with three chelating agents with different functional moieties and differing chelating strengths. We show that increasing chelating strength can increase film-substrate interactions, resulting in thicker films when compared to traditional EPD. Results will also be presented on how the chelating strength relates to film formation as a function of deposition conditions. Yield for EPD is influenced by deposition conditions including applied electric field, particle concentration, and deposition time. This work shows that the functionalization of substrates with chelating agents that coordinate strongly with nanoparticles (phosphonic acid and dopamine) overcome parameters that traditionally hinder the deposition of thicker and more stable films, such as applied electric field and high particle concentration. We show that functionalizing substrates with chelating agents is a promising method to fabricate thick, stable films of nanoparticles deposited via EPD over a larger processing space by increasing film-substrate interactions. 
    more » « less
  3. Abstract Electrophoretic deposition (EPD) of colloidal particles is a practical system for the study of crystallization and related physical phenomena. The aggregation is driven by the electroosmotic flow fields and induced dipole moments generated by the polarization of the electrode‐particle‐electrolyte interface. Here, the electrochemical control of aggregation and repulsion in the electrophoretic deposition of colloidal microspheres is reported. The nature of the observed transition depended on the composition of the solvent, switching from electrode‐driven aggregation in water to electrical field‐driven repulsion in ethanol for otherwise identical systems of colloidal microspheres. This work uses optical microscopy‐derived particles and a recently developed particle insertion method approach to extract model‐free, effective interparticle potentials to describe the ensemble behavior of the particles as a function of the solvent and electrode potential at the electrode interface. This approach can be used to understand the phase behavior of these systems based on the observable particle positions rather than a detailed understanding of the electrode‐electrolyte microphysics. This approach enables simple predictability of the static and dynamic behaviors of functional colloid‐electrode interfaces. 
    more » « less
  4. Here we report on hydride-terminated (HT) electrodeposition of Pt multilayers onto ∼1.6 nm Au nanoparticles (NPs). The results build on our earlier findings regarding electrodeposition of a single monolayer of Pt onto Au NPs and reports relating to HT Pt electrodeposition onto bulk Au. In the latter case, it was found that electrodeposition of Pt from a solution containing PtCl 4 2− can be limited to a single monolayer of Pt atoms if it is immediately followed by adsorption of a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. In the present report we are interested in comparing the structure of NPs after multiple HT Pt electrodeposition cycles to the bulk analog. The results indicate that a greater number of HT Pt cycles are required to electrodeposit both a single Pt monolayer and Pt multilayers onto these Au NPs compared to bulk Au. Additionally, detailed structural analysis shows that there are fundamental differences in the structures of the AuPt materials depending on whether they are prepared on Au NPs or bulk Au. The resulting structures have a profound impact on formic acid oxidation electrocatalysis. 
    more » « less
  5. Abstract Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties—charge and bioadhesiveness—as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating—the coating of NPs with mucus—which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta‐potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21‐fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake. 
    more » « less