This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.
more » « less- Award ID(s):
- 2045738
- NSF-PAR ID:
- 10494464
- Publisher / Repository:
- Nanomaterials
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 28
- Subject(s) / Keyword(s):
- green synthesis nanoparticles catalysis cytotoxicity upland cress
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Titanium nitride (TiN) materials have gained an interest over the past years due to their unique characteristics, such as thermal stability, extreme hardness, low production cost, and comparable optical properties to gold. In the present study, TiN nanoparticles were synthesized via a thermal benzene route to obtain black nanoparticles. Scanning electron microscopy (SEM) was carried out to examine the morphology. Further microscopic characterization was done where the final product was drop cast onto double-sided conductive carbon tape and sputter-coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDS) that revealed they are spherical. ImageJ software was used to measure the average size of the particles to be 79 nm in diameter. EDS was used to determine the elements present in the sample and concluded that there were no impurities. Further characterization by Fourier Transform infrared (FTIR) spectroscopy was carried out to identify the characteristic peaks of TiN. X-ray diffraction (XRD) revealed typical peaks of cubic phase titanium nitride, and crystallite size was determined to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size distribution of the TiN nanoparticles, with nanoparticles averaging at 154 nm in diameter. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged.more » « less
-
null (Ed.)Abstract This paper presents research results of biocidal effect of thermoplastic- polyester-elastomer (TPE-E) with incorporation of hybrid Ag/ZnO/SiO 2 NPs (silver/Zinc oxide/SiO 2 nanoparticles). These results were compared with various gamma-irradiated doses and processing techniques including extrusion, injection molding and compression molding. In all these processing techniques the TPE-E was mixed with mineral oil and Ag/ZnO/SiO 2 nanoparticles. The TPE-E nanocomposites were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Infrared FT spectroscopy (FTIR), surface enhanced Raman technique ( SERS), FESEM (Field emission scanning electron microscopy), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), TEM (transmission electronic microscopy) and antimicrobial test. Antibacterial activity against E. coli and S. aureus , are reported and these results showed potential application in health care products.more » « less
-
A microwave assisted method was used to synthesize RhAu nanoparticles (NPs). Characterization, based upon transmission electron microscopy (TEM), energy dispersive spectroscopy, and powder X-ray diffraction, provided the evidence of monomodal alloy NPs with a mean size distribution between 3 and 5 nm, depending upon the composition. Extended X-ray adsorption fine-structure spectroscopy (EXAFS) also showed evidence of alloying, but the coordination numbers of Rh and Au indicated significant segregation between the metals. More problematic were the low coordination numbers for Rh; values of ca. 9 indicate NPs smaller than 2 nm, significantly smaller than those observed with TEM. Additionally, no single-particle structural models were able to reproduce the experimental EXAFS data. Resolution of this discrepancy was achieved with high resolution aberration corrected scanning TEM imaging which showed the presence of ultra-small (<2 nm) pure Rh clusters and larger (∼3–5 nm) segregated particles with Au-rich cores and Rh-decorated shells. A heterogeneous model with a mixture of ultrasmall pure Rh clusters and larger segregated Rh/Au NPs was able to explain the experimental measurements of the NPs over the range of compositions measured. The combination of density functional theory, EXAFS, and TEM allowed us to quantify the heterogeneity in the RhAu NPs. It was only through this combination of theoretical and experimental techniques that resulted in a bimodal distribution of particle sizes that was able to explain all of the experimental characterization data.more » « less
-
Abstract Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived from
Acacia catechu, Artemisia vulgaris , andCynodon dactylon . The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris, andC. dactylon respectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris , andC. dactylon, respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia, andShigella sonnei demonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future. -
Abstract Polyvinylpyrrolidone (PVP) fibers embedded with Zinc Oxide nanoparticles (ZnO NPs) were prepared by the centrifugal spinning of aqueous PVP solutions and ZnO NPs. The ZnO NPs were synthesized and coated with either cetyltrimethylammonium bromide or hexadecyltrimethylammonium bromide. The structure and morphology of the nanocomposite fibers were studied using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy and Thermogravimetric analysis. The effect of surfactant coating on the antibacterial activity of ZnO NPs and PVP/ZnO nanocomposite fibers against
Escherichia coli (E. coli ) andBacillus megaterium (B. megaterium ) bacteria was systematically investigated. The present study indicated that coating the ZnO NPs with surfactants resulted in large and uniform inhibition of bacterial growth.