skip to main content

Title: Shield Decentralization for Safe Multi-Agent Reinforcement Learning
Learning safe solutions is an important but challenging problem in multi-agent reinforcement learning (MARL). Shielded reinforcement learning is one approach for preventing agents from choosing unsafe actions. Current shielded reinforcement learning methods for MARL make strong assumptions about communication and full observability. In this work, we extend the formalization of the shielded reinforcement learning problem to a decentralized multi-agent setting. We then present an algorithm for decomposition of a centralized shield, allowing shields to be used in such decentralized, communication-free environments. Our results show that agents equipped with decentralized shields perform comparably to agents with centralized shields in several tasks, allowing shielding to be used in environments with decentralized training and execution for the first time.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information sharing among agents to jointly solve problems is challenging for multi-agent reinforcement learning algorithms (MARL) in smart environments. In this paper, we present a novel information sharing approach for MARL, which introduces a Team Information Matrix (TIM) that integrates scenario-independent spatial and environmental information combined with the agent's local observations, augmenting both individual agent's performance and global awareness during the MARL learning. To evaluate this approach, we conducted experiments on three multi-agent scenarios of varying difficulty levels implemented in Unity ML-Agents Toolkit. Experimental results show that the agents utilizing our TIM-Shared variation outperformed those using decentralized MARL and achieved comparable performance to agents employing centralized MARL. 
    more » « less
  2. Centralized Training for Decentralized Execution, where agents are trained offline in a centralized fashion and execute online in a decentralized manner, has become a popular approach in Multi-Agent Reinforcement Learning (MARL). In particular, it has become popular to develop actor-critic methods that train decentralized actors with a centralized critic where the centralized critic is allowed access to global information of the entire system, including the true system state. Such centralized critics are possible given offline information and are not used for online execution. While these methods perform well in a number of domains and have become a de facto standard in MARL, using a centralized critic in this context has yet to be sufficiently analyzed theoretically or empirically. In this paper, we therefore formally analyze centralized and decentralized critic approaches, and analyze the effect of using state-based critics in partially observable environments. We derive theories contrary to the common intuition: critic centralization is not strictly beneficial, and using state values can be harmful. We further prove that, in particular, state-based critics can introduce unexpected bias and variance compared to history-based critics. Finally, we demonstrate how the theory applies in practice by comparing different forms of critics on a wide range of common multi-agent benchmarks. The experiments show practical issues such as the difficulty of representation learning with partial observability, which highlights why the theoretical problems are often overlooked in the literature. 
    more » « less
  3. Centralized Training for Decentralized Execution, where agents are trained offline using centralized information but execute in a decentralized manner online, has gained popularity in the multi-agent reinforcement learning community. In particular, actor-critic methods with a centralized critic and decentralized actors are a common instance of this idea. However, the implications of using a centralized critic in this context are not fully discussed and understood even though it is the standard choice of many algorithms. We therefore formally analyze centralized and decentralized critic approaches, providing a deeper understanding of the implications of critic choice. Because our theory makes unrealistic assumptions, we also empirically compare the centralized and decentralized critic methods over a wide set of environments to validate our theories and to provide practical advice. We show that there exist misconceptions regarding centralized critics in the current literature and show that the centralized critic design is not strictly beneficial, but rather both centralized and decentralized critics have different pros and cons that should be taken into account by algorithm designers 
    more » « less
  4. Andreas Krause, Emma Brunskill (Ed.)
    Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents’ action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach. 
    more » « less
  5. Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents’ policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate different solution concepts of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on 
    more » « less