skip to main content


Title: Incremental Task Learning with Incremental Rank Updates
Incremental Task learning (ITL) is a category of continual learning that seeks to train a single network for multiple tasks (one after another), where training data for each task is only available during the training of that task. Neural networks tend to forget older tasks when they are trained for the newer tasks; this property is often known as catastrophic forgetting. To address this issue, ITL methods use episodic memory, parameter regularization, masking and pruning, or extensible network structures. In this paper, we propose a new incremental task learning framework based on low-rank factorization. In particular, we represent the network weights for each layer as a linear combination of several rank-1 matrices. To update the network for a new task, we learn a rank-1 (or low-rank) matrix and add that to the weights of every layer. We also introduce an additional selector vector that assigns different weights to the low-rank matrices learned for the previous tasks. We show that our approach performs better than the current state-of-the-art methods in terms of accuracy and forgetting. Our method also offers better memory efficiency compared to episodic memory- and mask-based approaches. Our code will be available at https://github.com/CSIPlab/task-increment-rank-update.git  more » « less
Award ID(s):
2046293
NSF-PAR ID:
10389862
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
European Conference on Computer Vision (ECCV)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings. 
    more » « less
  2. null (Ed.)
    Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes. The fundamental roadblock faced by deep learning methods is that the models are optimized as “black boxes,” making it difficult to properly adjust the model parameters to preserve knowledge about previously seen data. To overcome the problem of catastrophic forgetting, we propose utilizing an alternative “white box” architecture derived from the principle of rate reduction, where each layer of the network is explicitly computed without back propagation. Under this paradigm, we demonstrate that, given a pretrained network and new data classes, our approach can provably construct a new network that emulates joint training with all past and new classes. Finally, our experiments show that our proposed learning algorithm observes significantly less decay in classification performance, outperforming state of the art methods on MNIST and CIFAR-10 by a large margin and justifying the use of “white box” algorithms for incremental learning even for sufficiently complex image data. 
    more » « less
  3. Abstract

    Task‐incremental learning (Task‐IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under‐explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in‐depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.

     
    more » « less
  4. Catastrophic forgetting is one of the major challenges in continual learning. To address this issue, some existing methods put restrictive constraints on the optimization space of the new task for minimizing the interference to old tasks. However, this may lead to unsatisfactory performance for the new task, especially when the new task is strongly correlated with old tasks. To tackle this challenge, we propose Trust Region Gradient Projection (TRGP) for continual learning to facilitate the forward knowledge transfer based on an efficient characterization of task correlation. Particularly, we introduce a notion of 'trust region' to select the most related old tasks for the new task in a layer-wise and single-shot manner, using the norm of gradient projection onto the subspace spanned by task inputs. Then, a scaled weight projection is proposed to cleverly reuse the frozen weights of the selected old tasks in the trust region through a layer-wise scaling matrix. By jointly optimizing the scaling matrices and the model, where the model is updated along the directions orthogonal to the subspaces of old tasks, TRGP can effectively prompt knowledge transfer without forgetting. Extensive experiments show that our approach achieves significant improvement over related state-of-the-art methods. 
    more » « less
  5. Avidan, S. (Ed.)
    The subpopulation shifting challenge, known as some subpopulations of a category that are not seen during training, severely limits the classification performance of the state-of-the-art convolutional neural networks. Thus, to mitigate this practical issue, we explore incremental subpopulation learning (ISL) to adapt the original model via incrementally learning the unseen subpopulations without retaining the seen population data. However, striking a great balance between subpopulation learning and seen population forgetting is the main challenge in ISL but is not well studied by existing approaches. These incremental learners simply use a pre-defined and fixed hyperparameter to balance the learning objective and forgetting regularization, but their learning is usually biased towards either side in the long run. In this paper, we propose a novel two-stage learning scheme to explicitly disentangle the acquisition and forgetting for achieving a better balance between subpopulation learning and seen population forgetting: in the first “gain-acquisition” stage, we progressively learn a new classifier based on the margin-enforce loss, which enforces the hard samples and population to have a larger weight for classifier updating and avoid uniformly updating all the population; in the second “counter-forgetting” stage, we search for the proper combination of the new and old classifiers by optimizing a novel objective based on proxies of forgetting and acquisition. We benchmark the representative and state-of-the-art non-exemplar-based incremental learning methods on a large-scale subpopulation shifting dataset for the first time. Under almost all the challenging ISL protocols, we significantly outperform other methods by a large margin, demonstrating our superiority to alleviate the subpopulation shifting problem (Code is released in https://github.com/wuyujack/ISL). 
    more » « less