skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM Memory
While RRAM crossbar-based In-Memory Computing (IMC) has proven highly effective in accelerating Deep Neural Networks (DNNs) inference, RRAM-based on-device training is less explored due to its high energy consumption of weight re-programming and cells' low endurance problem. Besides, emerging trends indicate a need for on-device continual learning which sequentially acquires knowledge from multiple tasks to enhance user's experiences and eliminate data privacy concerns. However, learning on each new task leads to forgetting prior learned knowledge on prior tasks, which is known as catastrophic forgetting. To address these challenges, we are the first to propose a novel training framework, Hyb-Learn, for enabling on-device continual learning with a hybrid RRAM/SRAM IMC architecture design. Specifically, when training each new arriving task, our approach first partitions the model into two groups based on the proposed task-correlated PE-wise correlation to freeze or re-training, and correspondingly mapping to RRAM and SRAM, respectively. In practice, the RRAM stores frozen weights with strong task correlation to prior tasks to eliminate the high cost of weight reprogramming issue of RRAM, while the SRAM stores the remaining weights that will be updated. Furthermore, to maximize the freezing ratio for improving training efficiency while maintaining accuracy and mitigating catastrophic forgetting, we incorporate self-supervised learning algorithms that are initialized from a pre-trained model for training each new task.  more » « less
Award ID(s):
2314591 2414603 2505326 2349802 2342726 2348376 2528723
PAR ID:
10563167
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bush, Daniel (Ed.)
    Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning. 
    more » « less
  2. Artificial neural networks (ANNs) struggle with continual learning, sacrificing performance on previously learned tasks to acquire new task knowledge. Here we propose a new approach allowing to mitigate catastrophic forgetting during continuous task learning. Typically a new task is trained until it reaches maximal performance, causing complete catastrophic forgetting of the previous tasks. In our new approach, termed Optimal Stopping (OS), network training on each new task continues only while the mean validation accuracy across all the tasks (current and previous) increases. The stopping criterion creates an explicit balance: lower performance on new tasks is accepted in exchange for preserving knowledge of previous tasks, resulting in higher overall network performance. The overall performance is further improved when OS is combined with Sleep Replay Consolidation (SRC), wherein the network converts to a Spiking Neural Network (SNN) and undergoes unsupervised learning modulated by Hebbian plasticity. During the SRC, the network spontaneously replays activation patterns from previous tasks, helping to maintain and restore prior task performance. This combined approach offers a promising avenue for enhancing the robustness and longevity of learned representations in continual learning models, achieving over twice the mean accuracy of baseline continuous learning while maintaining stable performance across tasks. 
    more » « less
  3. RRAM-based in-memory computing (IMC) effectively accelerates deep neural networks (DNNs) and other machine learning algorithms. On the other hand, in the presence of RRAM device variations and lower precision, the mapping of DNNs to RRAM-based IMC suffers from severe accuracy loss. In this work, we propose a novel hybrid IMC architecture that integrates an RRAM-based IMC macro with a digital SRAM macro using a programmable shifter to compensate for the RRAM variations and recover the accuracy. The digital SRAM macro consists of a small SRAM memory array and an array of multiply-and-accumulate (MAC) units. The non-ideal output from the RRAM macro, due to device and circuit non-idealities, is compensated by adding the precise output from the SRAM macro. In addition, the programmable shifter allows for different scales of compensation by shifting the SRAM macro output relative to the RRAM macro output. On the algorithm side, we develop a framework for the training of DNNs to support the hybrid IMC architecture through ensemble learning. The proposed framework performs quantization (weights and activations), pruning, RRAM IMC-aware training, and employs ensemble learning through different compensation scales by utilizing the programmable shifter. Finally, we design a silicon prototype of the proposed hybrid IMC architecture in the 65nm SUNY process to demonstrate its efficacy. Experimental evaluation of the hybrid IMC architecture shows that the SRAM compensation allows for a realistic IMC architecture with multi-level RRAM cells (MLC) even though they suffer from high variations. The hybrid IMC architecture achieves up to 21.9%, 12.65%, and 6.52% improvement in post-mapping accuracy over state-of-the-art techniques, at minimal overhead, for ResNet-20 on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively. 
    more » « less
  4. Catastrophic forgetting is one of the major challenges in continual learning. To address this issue, some existing methods put restrictive constraints on the optimization space of the new task for minimizing the interference to old tasks. However, this may lead to unsatisfactory performance for the new task, especially when the new task is strongly correlated with old tasks. To tackle this challenge, we propose Trust Region Gradient Projection (TRGP) for continual learning to facilitate the forward knowledge transfer based on an efficient characterization of task correlation. Particularly, we introduce a notion of 'trust region' to select the most related old tasks for the new task in a layer-wise and single-shot manner, using the norm of gradient projection onto the subspace spanned by task inputs. Then, a scaled weight projection is proposed to cleverly reuse the frozen weights of the selected old tasks in the trust region through a layer-wise scaling matrix. By jointly optimizing the scaling matrices and the model, where the model is updated along the directions orthogonal to the subspaces of old tasks, TRGP can effectively prompt knowledge transfer without forgetting. Extensive experiments show that our approach achieves significant improvement over related state-of-the-art methods. 
    more » « less
  5. Humans and most animals can learn new tasks without forgetting old ones. However, training artificial neural networks (ANNs) on new tasks typically causes them to forget previously learned tasks. This phenomenon is the result of “catastrophic forgetting,” in which training an ANN disrupts connection weights that were important for solving previous tasks, degrading task performance. Several recent studies have proposed methods to stabilize connection weights of ANNs that are deemed most important for solving a task, which helps alleviate catastrophic forgetting. Here, drawing inspiration from algorithms that are believed to be implemented in vivo, we propose a complementary method: adding a context-dependent gating signal, such that only sparse, mostly nonoverlapping patterns of units are active for any one task. This method is easy to implement, requires little computational overhead, and allows ANNs to maintain high performance across large numbers of sequentially presented tasks, particularly when combined with weight stabilization. We show that this method works for both feedforward and recurrent network architectures, trained using either supervised or reinforcement-based learning. This suggests that using multiple, complementary methods, akin to what is believed to occur in the brain, can be a highly effective strategy to support continual learning. 
    more » « less