skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lab-Scale X-Ray Emission/Absorption Spectroscopy for Operando Measurement of Electronic Structure of Transition Metals in Battery Electrodes
Tracking the change in electronic structure of target elements is crucial to investigate the nature of redox reactions occurring in battery electrodes. X-ray emission spectroscopy (XES) and x-ray absorption fine structure (XAFS) perform this role well with high sensitivity and throughput, but the requisite of synchrotron facilities often limits those availability for material characterization. Using a lab-scale x-ray emission/absorption spectrometer, we investigated the changes in the local structure and chemistry around the 3d transition metal elements of LiMO 2 cathodes for Li-ion batteries as a function of the battery state of charge (SoC). Ex situ measurement was prepared from the electrode samples with discrete difference in SoC. Coupled with ex situ measurement, operando measurement was performed using pouch cells with LiMO 2 cathode, which enabled a real-time monitoring of chemical shift in an element-specific manner resulted from changing electrode potential. Through the XES mode of the bench-top spectrometer, fluorescence emissions from the LiMO 2 cathode, or the cell containing it, was monochromatized by a spherically bent crystal analyzer (SBCA). The Kβ emissions of 3d transition metal elements such as cobalt display position/shape difference of spectrum with varying SoC. The trend of chemical shift and change in spectral features provided the information on the electronic structure variation, such as oxidation state change of 3d transition metals in LiMO 2 during charge and discharge (i.e., delithiation and lithiation). Furthermore, valence-to-core (VtC) emission signals helped enable in-depth analysis such as spin structure characterization. In addition to the XES analysis, we could measure K-edge XAFS for the same 3d transition metals in LiMO 2 as well. In the XAFS mode of the spectrometer, SBCA monochromatized bremsstrahlung x-ray generated from a high-power x-ray tube is used to make an incident source energy-dispersive. While Kβ XES probed occupied levels, K-edge XAFS examined unoccupied levels providing comprehensive understanding on the change in electronic structure of 3d transition metals in LiMO 2 . Figure 1  more » « less
Award ID(s):
1925797
PAR ID:
10389903
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ECS Meeting Abstracts
Volume:
MA2022-02
Issue:
56
ISSN:
2151-2043
Page Range / eLocation ID:
2150 to 2150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spherically‐bent crystal analyzers (SBCAs) see considerable use in very high‐resolution hard X‐ray wavelength dispersive X‐ray fluorescence spectroscopy, often called X‐ray emission spectroscopy (XES). While Si and Ge are the most frequently used diffractive components of SBCAs, we consider here the somewhat classical choice of muscovite mica as the dispersing element. We find that the various harmonics of a highest‐quality mica‐based SBCA show ~5–~40% of the integral reflectivity per unit solid angle of a typical Si or Ge SBCA in the hard X‐ray range, and that the mica SBCA have comparable energy resolution to the traditional SBCAs. Interestingly, the choice of mica comes with a practical benefit: the primary (0,0,2) reflection has sufficiently strong harmonics that are fairly tightly spaced in energy so that they span the complete energy range from ~4 to ~11 keV when used at convenient Bragg angles in a Rowland circle spectrometer. Hence, a single mica SBCA can be used for every K‐shell emission line of three dimensional transition metals and every L‐shell emission line of the lanthanide elements simply by selecting the correct mica (0,0,2) harmonic with a final energy‐dispersive solid state detector. The loss in efficiency is counteracted by an operational efficiency, i.e., the “universal” application of a single analyzer over a very large range of elements. This performance suggests future application of mica SBCAs in both laboratory‐based XES and synchrotron‐based photon‐in, photon‐out spectroscopies in the hard X‐ray range. 
    more » « less
  2. Enhancing battery energy storage capability and reducing the cost per average energy capacity is urgent to satisfy the increasing energy demand in modern society. The lithium-sulfur (Li-S) battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1), low cost, and low toxicity.1 Despite these advantages, the practical utilization of lithium-sulfur (Li-S) batteries to date has been hindered by a series of obstacles, including low active material loading, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the Li-S battery.3 However, the longer diffusion length of lithium ions, which resulted in high tortuosity in the compact stacking thick electrode, decreases the penetration ability of the electrolyte into the entire cathode.4 Although an effort to induce catalysts in the cathode was made to promote sulfur conversion kinetic conditions, catalysts based on transition metals suffered from the low electronic conductivity, and some elements (i.e.: Co, Mn) may even absorb and restrict polysulfides for further reaction. 5 To mitigate the issues listed above, herein we propose a novel sulfur cathode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD). 6,7 Specifically, the cathode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in an N2 atmosphere in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. The intrinsic carbon defects are expected to create favorable sulfur conversion conditions with sufficient electronic conductivity. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects. Identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also on the inner surface of the microchannels. High-resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified samples demonstrate that a high concentration of the defects has been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with an elevated sulfur utilization ratio, accelerated reaction kinetics and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. References: 1 Chen, Y. Adv Mater 33, e2003666. 2 Bhargav, A. Joule 4, 285-291. 3 Liu, S. Nano Energy 63, 103894. 4 Chu, T. Carbon Energy 3. 5 Li, Y. Matter 4, 1142-1188. 6 John P. Lock. Macromolecules 39, 4 (2006). 7 Zekoll, S. Energy & Environmental Science 11, 185-201. 
    more » « less
  3. Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1 
    more » « less
  4. The analytical chemistry of phosphorus-containing materials is often impeded by the long measurement times and relatively large sample masses needed for 31 P NMR spectroscopy, by the scarcity and access limitations of synchrotron beamlines operating in the energy range of the P K-edge, by the challenges posed by species interconversion during liquid extraction, and by the considerable air-sensitivity typical of many phosphorus-containing materials and nanophases. To this end, we report the design and operation of a new laboratory-based spectrometer to simultaneously perform P Kα and Kβ X-ray emission spectroscopy (XES) while being housed in a research-grade controlled-atmosphere glovebox. Demonstration studies on nickel phosphide nanophases illustrate the importance of air-free XES and the value of simultaneous Kα and Kβ spectroscopy for identifying the P oxidation state and for investigating nanoscale influences on valence level electronic structures. 
    more » « less
  5. X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra. Implementation of a fiber optic UV/Vis spectrometer and parabolic mirror setup inside the dual array valence emission spectrometer allowing for simultaneous measurement of microfluidic flow and mixing samples at the Photon-In Photon-Out X-ray Spectroscopy beamline is described, and initial results on ferricyanide and a dilute iron protein are presented. In conjunction with advanced microfluidic mixing techniques, this will allow for the measurement and quantification of highly reactive catalytic intermediates at reaction-relevant temperatures on the millisecond timescale while avoiding potential complications induced by freeze quenching samples. 
    more » « less