This dataset contains broadband albedo measurements made on the sea ice surface from approximately 1-meter (m) elevation during April – September 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Broadband albedo data was collected using a Kipp and Zonen albedometer. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and albedo photo dataset (doi.org/10.18739/A2B27PS3N).
more »
« less
Photos of the sea ice surface corresponding to surface albedo datasets collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign in the Central Arctic Ocean, April – September 2020
This dataset contains the corresponding photos of the albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. The corresponding measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and broadband albedo dataset (doi.org/10.18739/A2KK94D36).
more »
« less
- Award ID(s):
- 1724467
- PAR ID:
- 10389912
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- MOSAiC albedo sea ice
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains spectral albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters, (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Spectral albedo data was collected using an Analytical Spectral Devices (ASD) FieldSpec Pro spectroradio meter with a custom spectralon cosine collector. Incident and reflected values were recorded subsequently, with 10 scans averaged for each.Processing of the data includes calculating an albedo from the relative values of incident and reflected scans, and completing quality control to (i) correct for parabolic offset between sensors, (ii) add flag quantifying variability of incident light that may be used to filter scans, (iii) remove scans with physically unrealistic values or slopes, and (iv) remove and filter noisy parts of the spectrum. This dataset is collocated with the broadband albedo dataset (doi.org/10.18739/A2KK94D36) and albedo photo dataset (doi.org/10.18739/A2B27PS3N).more » « less
-
The dataset is derived from HELiX Uncrewed Aircraft System flights that were conducted in the Central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The data include Universal Coordinated Time (UTC), downwelling and upwelling shortwave radiation measurements, and position and attitude from the Uncrewed Aircraft System (UAS). Temperature, relative humidity and pressure from two different sensors are also provided. A quality control flag is associated with each scientific measurement. A flight flag is also included to indicate the different phases of the flight - on the ground, take-off/landing phases, and in flight. All the data have been synchronized and interpolated at 10 hertz (Hz). The purpose of this dataset is to provide information on albedo over different features of the sea ice (snow, melt pond, ocean). Three flight patterns were implemented during the campaign with the HELiX, a grid pattern at constant altitude (15 meters or 7 meters above ground level), hovering flights ( 2-5 minutes hovering over identified sea ice features at low altitude ~ 3 meters above ground level), and profiles up to 400 meters above ground level. Displaying latitude, longitude and altitude will help users to identify the flight pattern. Albedo measurements have been validated with surface-based measurements and details can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep.more » « less
-
Abstract The “surface scattering layer” (SSL) is the highly‐scattering, coarse‐grained ice layer that forms on the surface of melting, drained sea ice during spring and summer. Ice of sufficient thickness with an SSL has an observed persistent broadband albedo of ∼0.65, resulting in a strong influence on the regional solar partitioning. Experiments during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate expedition showed that the SSL re‐forms in approximately 1 day following manual removal. Coincident spectral albedo measurements provide insight into the SSL evolution, where albedo increased on sunny days with higher solar insolation. Comparison with experiments in radiative transfer and global climate models show that the sea ice albedo is greatly impacted by the SSL thickness. The presence of SSL is a significant component of the ice‐albedo feedback, with an albedo impact of the same order as melt ponds. Changes in SSL and implications for Arctic sea ice within a warming climate are uncertain.more » « less
-
Data are available for download at: https://arcticdata.io/data/10.18739/A2RV0D21Z/ This dataset consists of multispectral imagery data products produced from HELiX uncrewed aircraft system (UAS) flights that were conducted over or near sea ice during the MOSAiC expedition. These data were produced from raw multispectral imagery acquired by the Helix’s gimbal-mounted RedEdge-MX camera. Additional data from the Helix UAS’ other sensors, which consist of hemispheric irradiance measurements from two Kipp and Zonen pyranometers and thermodynamic parameters from two Vaisala RSS421 sensors can be found in Radiance Calmer, Gijs de Boer, Jonathan Hamilton, Dale Lawrence, Steve Borenstein, et al. 2021. HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate campaign, A1 level data. Arctic Data Center. doi:10.18739/A2M90243X (A1 data) or Radiance Calmer, Gijs de Boer, Jonathan Hamilton, Dale Lawrence, Steve Borenstein, et al. 2021. HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Campaign. Arctic Data Center. doi:10.18739/A2GH9BB0Q (B1 data). Three main flight types were conducted with the Helix: a grid pattern, hover, and profile. Pix4D was used to produce five (one for each channel of the camera) orthomosaics, reflectance maps, and colorized index maps for all flight types. A video of the images taken during the flight, including an image scale, UTC time, and altitude overlay was produced for each profile flight. More information on the data and methods can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep.more » « less
An official website of the United States government
