The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo of melting ice relatively high compared to ice with the SSL manually removed. Measurements of albedo provide information on how incoming shortwave radiation is partitioned by the SSL and have been pivotal to improving climate model parameterizations. However, the relationship between the physical and optical properties of the SSL is still poorly constrained. Until now, radiative transfer models have been the only way to infer the microstructure of the SSL. During the MOSAiC expedition of 2019–2020, we took samples and, for the first time, directly measured the microstructure of the SSL on bare sea ice using X-ray micro-computed tomography. We show that the SSL has a highly anisotropic, coarse, and porous structure, with a small optical diameter and density at the surface, increasing with depth. As the melting surface ablates, the SSL regenerates, maintaining some aspects of its microstructure throughout the melt season. We used the microstructure measurements with a radiative transfer model to improve our understanding of the relationship between physical properties and optical properties at 850 nm wavelength. When the microstructure is used as model input, we see a 10–15% overestimation of the reflectance at 850 nm. This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer equation or ii) using a more appropriate radiative transfer model.
The “surface scattering layer” (SSL) is the highly‐scattering, coarse‐grained ice layer that forms on the surface of melting, drained sea ice during spring and summer. Ice of sufficient thickness with an SSL has an observed persistent broadband albedo of ∼0.65, resulting in a strong influence on the regional solar partitioning. Experiments during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate expedition showed that the SSL re‐forms in approximately 1 day following manual removal. Coincident spectral albedo measurements provide insight into the SSL evolution, where albedo increased on sunny days with higher solar insolation. Comparison with experiments in radiative transfer and global climate models show that the sea ice albedo is greatly impacted by the SSL thickness. The presence of SSL is a significant component of the ice‐albedo feedback, with an albedo impact of the same order as melt ponds. Changes in SSL and implications for Arctic sea ice within a warming climate are uncertain.
more » « less- PAR ID:
- 10446395
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 9
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated.more » « less
-
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.more » « less
-
Abstract The decline of Arctic sea ice extent has created a pressing need for accurate seasonal predictions of regional summer sea ice. Recent work has shown evidence for an Arctic sea ice spring predictability barrier, which may impose a sharp limit on regional forecasts initialized prior to spring. However, the physical mechanism for this barrier has remained elusive. In this work, we perform a daily sea ice mass (SIM) budget analysis in large ensemble experiments from two global climate models to investigate the mechanisms that underpin the spring predictability barrier. We find that predictability is limited in winter months by synoptically driven SIM export and negative feedbacks from sea ice growth. The spring barrier results from a sharp increase in predictability at melt onset, when ice‐albedo feedbacks act to enhance and persist the preexisting export‐generated mass anomaly. These results imply that ice thickness observations collected after melt onset are particularly critical for summer Arctic sea ice predictions.
-
This dataset contains the corresponding photos of the albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. The corresponding measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and broadband albedo dataset (doi.org/10.18739/A2KK94D36).more » « less