Future real-time applications like smart cities will use complex Machine Learning (ML) models for a variety of tasks. Timely status information is required for these applications to be reliable. Offloading computation to a mobile edge cloud (MEC) can reduce the completion time of these tasks. However, using the MEC may come at a cost such as related to use of a cloud service or privacy. In this paper, we consider a source that generates time-stamped status updates for delivery to a monitor after processing by the mobile device or MEC. We study how a scheduler must forward these updates to achieve timely updates at the monitor but also limit MEC usage. We measure timeliness at the monitor using the age of information (AoI) metric. We formulate this problem as an infinite horizon Markov decision process (MDP) with an average cost criterion. We prove that an optimal scheduling policy has an age-threshold structure that depends on how long an update has been in service.
more »
« less
Privacy Leakage in Discrete-Time Updating Systems
A source generates time-stamped update packets that are sent to a server and then forwarded to a monitor. This occurs in the presence of an adversary that can infer information about the source by observing the output process of the server. The server wishes to release updates in a timely way to the monitor but also wishes to minimize the information leaked to the adversary. We analyze the trade-off between the age of information (AoI) and the maximal leakage for systems in which the source generates updates as a Bernoulli process. For a time slotted system in which sending an update requires one slot, we consider three server policies: (1) Memoryless with Bernoulli Thinning (MBT): arriving updates are queued with some probability and head-of-line update is released after a geometric holding time; (2) Deterministic Accumulate-and-Dump (DAD): the most recently generated update (if any) is released after a fixed time; (3) Random Accumulate-and-Dump (RAD): the most recently generated update (if any) is released after a geometric waiting time. We show that for the same maximal leakage rate, the DAD policy achieves lower age compared to the other two policies but is restricted to discrete age-leakage operating points.
more »
« less
- PAR ID:
- 10389923
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 2076 to 2081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived.more » « less
-
A source submits status update jobs to a service fa- cility for processing and delivery to a monitor. The status updates belong to service classes with different service requirements. We model the service requirements using a hyperexponential service time model. To avoid class-specific bias in the service process, the system implements an M/G/1/1 blocking queue; new arrivals are discarded if the server is busy. Using an age-of-information (AoI) metric to characterize timeliness of the updates, a stochastic hybrid system (SHS) approach is employed to derive the overall average AoI and the average AoI for each service class. We observe that both the overall AoI and class-specific AoI share a common penalty that is a function of the second moment of the average service time and they differ chiefly because of their different arrival rates. We show that each high-probability service class has an associated age-optimal update arrival rate while low- probability service classes incur an average age that is always decreasing in the update arrival rate.more » « less
-
A source node forwards fresh status updates as a point process to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the source to be as timely as possible. In this network, timeliness at each node is measured by an age of information metric: how old is the timestamp of the freshest received update. This work extends a method for evaluating the average age at each node in the network when nodes forward updates using a memoryless gossip protocol. This method is then demonstrated by age analysis for a simple network.more » « less
-
Dynamic Searchable Symmetric Encryption (DSSE) provides efficient techniques for securely searching and updating an encrypted database. However, efficient DSSE schemes leak some sensitive information to the server. Recent works have implemented forward and backward privacy as security properties to reduce the amount of information leaked during update operations. Many attacks have shown that leakage from search operations can be abused to compromise the privacy of client queries. However, the attack literature has not rigorously investigated techniques to abuse update leakage. In this work, we investigate update leakage under DSSE schemes with forward and backward privacy from the perspective of a passive adversary. We propose two attacks based on a maximum likelihood estimation approach, the UFID Attack and the UF Attack, which target forward-private DSSE schemes with no backward privacy and Level 2 backward privacy, respectively. These are the first attacks to show that it is possible to leverage the frequency and contents of updates to recover client queries. We propose a variant of each attack which allows the update leakage to be combined with search pattern leakage to achieve higher accuracy. We evaluate our attacks against a real-world dataset and show that using update leakage can improve the accuracy of attacks against DSSE schemes, especially those without backward privacy.more » « less
An official website of the United States government

