Abstract Protein posttranslational modification (PTM) is a biochemical mechanism benefitting cellular adaptation to dynamic intracellular and environmental conditions. Recently, several acylation marks have been identified as new protein PTMs occurring on specific lysine residues in mammalian cells: isobutyrylation, methacrylation, benzoylation, isonicotinylation, and lactylation. These acylation marks were initially discovered to occur on nucleosomal histones, but they potentially occur as prevalent biomarkers on non‐histone proteins as well. The existence of these PTMs is a downstream consequence of metabolism and demonstrates the intimate crosstalk between active cellular metabolites and regulation of protein function. Emerging evidence indicates that these acylation marks on histones affect DNA transcription and are functionally distinct from the well‐studied lysine acetylation. Herein, we discuss enzymatic regulation and metabolic etiology of these acylations, 'reader' proteins that recognize different acylations, and their possible physiological and pathological functions. Several of these modifications correlate with other well‐studied acylations and fine‐tune the regulation of gene expression. Overall, findings of these acylation marks reveal new molecular links between metabolism and epigenetics and open up many questions for future investigation. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. 
                        more » 
                        « less   
                    
                            
                            Recording of cellular physiological histories along optically readable self-assembling protein chains
                        
                    
    
            Abstract Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands—a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1848029
- PAR ID:
- 10389928
- Date Published:
- Journal Name:
- Nature Biotechnology
- ISSN:
- 1087-0156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ferritin is a ubiquitous intracellular iron storage protein that plays a crucial role in iron homeostasis. Animal tissue ferritins consist of multiple isoforms (or isoferritins) with different proportions of H and L subunits that contribute to their structural and compositional heterogeneity, and thus physiological functions. Using size exclusion and anion exchange chromatography, capillary isoelectric focusing (cIEF), and SDS-capillary gel electrophoresis (SDS-CGE), we reveal for the first time a significant variation in ferritin subunit composition and isoelectric points, in both recombinant and native ferritins extracted from animal organs. Our results indicate that subunits composition is the main determinant of the mean pI of recombinant ferritin heteropolymers, and that ferritin microheterogeneity is a common property of both natural and recombinant proteins and appears to be an intrinsic feature of the cellular machinery during ferritin expression, regulation, post-translational modifications, and post-subunits assembly. The functional significance and physiological implications of ferritin heterogeneity in terms of iron metabolism, response to oxidative stress, tissue-specific functions, and pathological processes are discussed.more » « less
- 
            Synopsis Marine mammals exhibit some of the most dramatic physiological adaptations in their clade and offer unparalleled insights into the mechanisms driving convergent evolution on relatively short time scales. Some of these adaptations, such as extreme tolerance to hypoxia and prolonged food deprivation, are uncommon among most terrestrial mammals and challenge established metabolic principles of supply and demand balance. Non-targeted omics studies are starting to uncover the genetic foundations of such adaptations, but tools for testing functional significance in these animals are currently lacking. Cellular modeling with primary cells represents a powerful approach for elucidating the molecular etiology of physiological adaptation, a critical step in accelerating genome-to-phenome studies in organisms in which transgenesis is impossible (e.g., large-bodied, long-lived, fully aquatic, federally protected species). Gene perturbation studies in primary cells can directly evaluate whether specific mutations, gene loss, or duplication confer functional advantages such as hypoxia or stress tolerance in marine mammals. Here, we summarize how genetic and pharmacological manipulation approaches in primary cells have advanced mechanistic investigations in other non-traditional mammalian species, and highlight the need for such investigations in marine mammals. We also provide key considerations for isolating, culturing, and conducting experiments with marine mammal cells under conditions that mimic in vivo states. We propose that primary cell culture is a critical tool for conducting functional mechanistic studies (e.g., gene knockdown, over-expression, or editing) that can provide the missing link between genome- and organismal-level understanding of physiological adaptations in marine mammals.more » « less
- 
            The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.more » « less
- 
            Asthagiri, Anand R. (Ed.)Individual cells show variability in their signaling dynamics that often correlates with phenotypic responses, indicating that cell-to-cell variability is not merely noise but can have functional consequences. Based on this observation, we reasoned that cell-to-cell variability under the same treatment condition could be explained in part by a single signaling motif that maps different upstream signals into a corresponding set of downstream responses. If this assumption holds, then repeated measurements of upstream and downstream signaling dynamics in a population of cells could provide information about the underlying signaling motif for a given pathway, even when no prior knowledge of that motif exists. To test these two hypotheses, we developed a computer algorithm called MISC (Motif Inference from Single Cells) that infers the underlying signaling motif from paired time-series measurements from individual cells. When applied to measurements of transcription factor and reporter gene expression in the yeast stress response, MISC predicted signaling motifs that were consistent with previous mechanistic models of transcription. The ability to detect the underlying mechanism became less certain when a cell’s upstream signal was randomly paired with another cell’s downstream response, demonstrating how averaging time-series measurements across a population obscures information about the underlying signaling mechanism. In some cases, motif predictions improved as more cells were added to the analysis. These results provide evidence that mechanistic information about cellular signaling networks can be systematically extracted from the dynamical patterns of single cells.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    