Manganese dioxide (MnO 2 ) with a conversion mechanism is regarded as a promising anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity (∼1223 mA h g −1 ) and environmental benignity as well as low cost. However, it suffers from insufficient rate capability and poor cyclic stability. To circumvent this obstacle, semiconducting polypyrrole coated-δ-MnO 2 nanosheet arrays on nickel foam (denoted as MnO 2 @PPy/NF) are prepared via hydrothermal growth of MnO 2 followed by the electrodeposition of PPy on the anode in LIBs. The electrode with ∼50 nm thick PPy coating exhibits an outstanding overall electrochemical performance. Specifically, a high rate capability is obtained with ∼430 mA h g −1 of discharge capacity at a high current density of 2.67 A g −1 and more than 95% capacity is retained after over 120 cycles at a current rate of 0.86 A g −1 . These high electrochemical performances are attributed to the special structure which shortens the ion diffusion pathway, accelerates charge transfer, and alleviates volume change in the charging/discharging process, suggesting a promising route for designing a conversion-type anode material for LIBs.
more »
« less
PolarClean & dimethyl isosorbide: green matches in formulating cathode slurry
In this study, two green organic solvents are reported in LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC111)-based slurry preparation and subsequent cathode fabrication for Li ion batteries. NMC111, conductive carbon and poly(vinylidene fluoride) binder composite slurries prepared with methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) and dimethyl isosorbide (DMI) exhibit mechanically stable, crack-free uniform coating structures. Both slurries showed similar shear-thinning viscosity behavior that suggests similar processibility during electrode casting and coating. When used as the cathode in Li/NMC111 half cells, the electrode slurries prepared with PolarClean show promising electrochemical performance metrics with an average specific charge capacity of 155 ± 1 mA h g −1 at C/10 over 100 cycles, comparable to the films (152 ± 3 mA h g −1 at C/10) prepared with traditional N -methyl pyrrolidone (NMP) solvent. The use of PolarClean points to a potential route to replace toxic NMP in cathode fabrication without altering the manufacturing process. However, electrodes prepared with DMI demonstrate inferior electrochemical performance with an average charge capacity of 120 mA h g −1 . Nonetheless, DMI may still offer some promising features and warrants further detailed investigation in terms of compatible electrolyte, tailoring the slurry preparation, and casting conditions.
more »
« less
- Award ID(s):
- 2138438
- PAR ID:
- 10389965
- Date Published:
- Journal Name:
- Energy Advances
- Volume:
- 1
- Issue:
- 10
- ISSN:
- 2753-1457
- Page Range / eLocation ID:
- 671 to 676
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The utilization of redox‐active gas as cathode materials has been proposed as a promising approach to meet the demand for next‐generation battery technologies. Toward this end, nitrogen oxides (NOx)—inexpensive, abundant gases readily produced from ammonia on an industrial scale—is a promising energy storage media; however, its utilization as cathode material has not been achieved. In this work, the cage effect of NO and NO2radicals are utilized to stabilize the charge product of Li‐NOxcell as N2O3. This cell operates via reversible redox of LiNO3to N2O3, achieving a specific capacity of 1,570 mA h gcarbon−1or 25 mA h cmelectrode−2 at a full cell voltage of 3.85 V with an average energy efficiency of 89% at a current density up to 2 mA cmelectrode−2. These metrics represent one of the highest areal capacity, current density, cell voltage, and energy efficiency reported for a metal‐gas cells.more » « less
-
Abstract Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.more » « less
-
Organic cathode materials have attracted significant research attention recently, yet their low electronic conductivity limits their application as solid-state cathodes in lithium batteries. This work describes the development of a novel organic cathode chemistry with significant intrinsic electronic conductivity for solid-state thin film batteries. A polymeric charge transfer complex (CTC) cathode, poly(4-vinylpyridine)-iodine monochloride (P4VP·ICl), was prepared by initiated chemical vapor deposition (iCVD). Critical chemical, physical, and electrochemical properties of the CTC complex were characterized. The complex was found to have an electronic conductivity of 4 × 10-7 S cm-1 and total conductivity of 2 × 10−6 S cm−1 at room temperature, which allows the construction of a 2.7 μm thick dense cathode. By fabricating a P4VP·ICl|LIPON|Li thin film battery, the discharge capacity of P4VP·ICl was demonstrated to be >320 mA h cm−3 on both rigid and flexible substrates. The flexible P4VP·ICl|LIPON|Li battery was prepared by simply replacing the rigid substrate with a flexible polyimide substrate and the as-prepared battery can be bent 180° while maintaining electrochemical performance.more » « less
-
In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field.more » « less
An official website of the United States government

