skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning about Osmosis through Engineering Design Process
Students’ sound knowledge about osmosis can lead to their understanding of other related biological processes that require the movement of materials across cell membranes, such as photosynthesis, homeostasis, and cellular respiration. However, students have difficulties to understand osmosis. This challenge has been attributed to the abstract nature of the concept and the way it is presented to students. Thus, we present an engineering design, integrated biology unit in which students use the engineering design process to learn about osmosis and its related concepts. A dependent t-test revealed statistically significant differences in students’ understanding of osmosis and related concepts, and the engineering design process before and after the unit. Overall, in this unit students developed the understanding of osmosis in a real-world context through an engineering design process.  more » « less
Award ID(s):
1636443
PAR ID:
10389967
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The American Biology Teacher
Volume:
84
Issue:
5
ISSN:
0002-7685
Page Range / eLocation ID:
297 to 307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students often find it challenging to learn about complex and abstract biological processes. Using the engineering design process, which involves designing, building, and testing prototypes, can help students visualize the processes and anchor ideas from lab activities. We describe an engineering-design-integrated biology unit designed for high school students in which they learn about the properties of slime molds, the difference between eukaryotes and prokaryotes, and the iterative nature of the engineering design process. Using the engineering design process, students were successful in quarantining the slime mold from the non-inoculated oats. A t-test revealed statistically significant differences in students' understanding of slime mold characteristics, the difference between eukaryotes and prokaryotes, and the engineering design process before and after the unit. Overall, students demonstrated sound understanding of the biology core ideas and engineering design skills inherent in this unit. 
    more » « less
  2. Engineering design that requires mathematical analysis, scientific understanding, and technology is critical for preparing students for solving engineering problems. In simulated design environments, students are expected to learn about science and engineering through their design. However, there is a lack of understanding concerning linking science concepts with design problems to design artifacts. This study investigated how 99 high school students applied science concepts to solarize their school using a computer-aided engineering design software, aiming to explore the interaction between students’ science concepts and engineering design behaviors. Students were assigned to three groups based on their design performance: the achieving group, proficient group, and emerging group. By mining log activities, we explored the interactions among students’ application of science concepts, engineering design behaviors, design iterations, and their design performance. We found that the achieving group has a statistically higher number of design iterations than the other two performance groups. We also identified distinctive transition patterns in students’ applying science concepts and exercising design behaviors among three groups. The implications of this study are then discussed. 
    more » « less
  3. Abstract Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes:(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills. 
    more » « less
  4. Abstract BackgroundIn introductory biology classrooms, cell and molecular concepts are often taught separate from those related to evolution and ecology, and usually in completely different courses. Furthermore, many examples used to teach introductory concepts are difficult for students to relate to. To address these issues, we developed curricular materials focused on the topic of breast cancer that: (1) aim to teach students how to integrate the various sub-disciplines of biology, with evolution as the unifying theme, and (2) aim to present course materials using relatable examples such as human health and disease. To assess the potential value of these materials, we asked students to complete a pre-unit and post-unit assessment before and after completing the interactive course unit on breast cancer. ResultsWe found that after learning about breast cancer, students reported that learning about biology in the context of human health made their learning experience easier, more interesting, and more relatable. After the unit, students also rated evolutionary concepts as being more important for understanding human health and disease. ConclusionsThese results have important implications for developing introductory biology curricula that have more personal appeal to students and may thus translate to better learning outcomes, as well as help students better understand the process of evolution as it occurs in humans. 
    more » « less
  5. null (Ed.)
    Design is a concept that means different things to different people. Even in the engineering design research community, there is little agreement on a consistent definition of design. This study looks into how engineering students understand product design, using a concept mapping exercise to elicit the key concepts and relationships present in their mental models. An analysis of concept maps from 130 third-year undergraduate engineering students shows how these students think about design, the common themes and relationships that are seen across the population, and variations across different groups of students. By understanding how students in the midst of ABET-accredited programs conceptualize design, conclusions can be drawn regarding the effectiveness of existing curricula in instilling a complete understanding of holistic product design. This can lead to recommendations regarding future engineering design learning objectives, teaching materials, and activities. 
    more » « less