skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: What Distinguishes Students’ Engineering Design Performance: Design Behaviors, Design Iterations, and Application of Science Concepts
Engineering design that requires mathematical analysis, scientific understanding, and technology is critical for preparing students for solving engineering problems. In simulated design environments, students are expected to learn about science and engineering through their design. However, there is a lack of understanding concerning linking science concepts with design problems to design artifacts. This study investigated how 99 high school students applied science concepts to solarize their school using a computer-aided engineering design software, aiming to explore the interaction between students’ science concepts and engineering design behaviors. Students were assigned to three groups based on their design performance: the achieving group, proficient group, and emerging group. By mining log activities, we explored the interactions among students’ application of science concepts, engineering design behaviors, design iterations, and their design performance. We found that the achieving group has a statistically higher number of design iterations than the other two performance groups. We also identified distinctive transition patterns in students’ applying science concepts and exercising design behaviors among three groups. The implications of this study are then discussed.  more » « less
Award ID(s):
2131097 2105695 2301164
PAR ID:
10633551
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Science Education and Technology
Volume:
34
Issue:
2
ISSN:
1059-0145
Page Range / eLocation ID:
314 to 326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings. 
    more » « less
  2. Clarke-Midura, J; Kollar, I; Gu, X; D’Angelo, C (Ed.)
    In collaborative problem-solving (CPS), students work together to solve problems using their collective knowledge and social interactions to understand the problem and progress towards a solution. This study focuses on how students engage in CPS while working in pairs in a STEM+C (Science, Technology, Engineering, Mathematics, and Computing) environment that involves open-ended computational modeling tasks. Specifically, we study how groups with different prior knowledge in physics and computing concepts differ in their information pooling and consensus-building behaviors. In addition, we examine how these differences impact the development of their shared understanding and learning. Our study consisted of a high school kinematics curriculum with 1D and 2D modeling tasks. Using an exploratory approach, we performed in-depth case studies to analyze the behaviors of groups with different prior knowledge distributions across these tasks. We identify effective information pooling and consensus-building behaviors in addition to difficulties students faced when developing a shared understanding of physics and computing concepts. 
    more » « less
  3. NA (Ed.)
    Biologically inspired design (BID) has gained attention in undergraduate and graduate engineering programs throughout the United States, and more post-secondary institutions are beginning to implement it into their engineering curriculum [1], [2]. However, little has been done to introduce BID concepts more formally into the K-12 curriculum. Consequently, a research study funded by the National Science Foundation focused on developing a BID integrated engineering curriculum for high school students. The curriculum is designed to integrate BID into the engineering design process (EDP) by leveraging analogical design tools that facilitate a transfer of biological strategies to design challenges. This enables students to understand both the engineering problem and the biological system that could be used to inspire design solutions. In this paper, we describe students’ application of BID integration in the engineering design process and their experiences utilizing BID as they solve design challenges. The curriculum was pilot tested in two 9th grade engineering classrooms across two schools during Spring 2022. Data was collected from four groups of students (n=12) enrolled in the engineering courses across two schools. The study includes classroom observations, student artifacts, and student focus groups. We utilized qualitative content analysis, a descriptive approach to analyzing student data [3], [4], to uncover the meaning and presence of text, messages, images, and transcriptions of dialogues [4]. In this study, we aim to capture the evidence of students’ experiences and engagement with BID concepts. The preliminarily findings illustrate that student groups enjoyed BID activities presented in the curriculum as they promoted students’ exploration of biological systems. BID integration allowed students to view nature differently, which some students indicated they had not previously employed for their design solutions. Although some students mentioned BID activities that helped them during the brainstorming phase of the design process, they were unable to explain BID integration in their final design solutions, unless prompted by the teacher. Furthermore, across the student groups, students indicated that prototype and test was the most engaging stage of the EDP since during this stage they were able to test their designs. This research is novel in its focus on understanding high school students’ experiences with the integration of BID in engineering and has important implications for diversifying engineering in K-12 education. 
    more » « less
  4. Performance assessment (PA) has been increasingly advocated as a method for measuring students’ conceptual understanding of scientific phenomena. In this study, we describe preliminary findings of a simulation- based PA utilized to measure 8th grade students’ understanding of physical science concepts taught via an experimental problem-based curriculum, SLIDER (Science Learning Integrating Design Engineering and Robotics). In SLIDER, students use LEGO robotics to complete a series of investigations and engineering design challenges designed to deepen their understanding of key force and motion concepts (net force, acceleration, friction, balanced forces, and inertia). The simulation-based performance assessment consisted of 4 tasks in which students engaged with video simulations illustrating physical science concepts aligned to the SLIDER curriculum. The performance assessment was administered to a stratified sample of 8th grade students (N=24) in one school prior to and following implementation of the SLIDER curriculum. In addition to providing an illustration of the use of simulation- based performance assessment in the context of design-based implementation research (DBIR), the results of the study indicate preliminary evidence of student learning over the course of curriculum implementation. 
    more » « less
  5. Abstract Engineering design has been widely implemented in K-12 curricula to cultivate future workforce. In this study, seventh-grade students (N = 38) participated in theSolarizing Your Schoolcurriculum, an action-oriented program where they engaged in engineering design processes to tackle a real-world problem related to renewable energy adoption. The study sought to explore how students balanced constraints and criteria in engineering design. Over a five-day period, seventh-grade students developed plans for adopting solar energy on their school campus and simulated the plan on a technology-enhanced epistemic tool, Aladdin (https://intofuture.org/aladdin.html). Data was collected through design artifacts, log data from design processes, and surveys about their learning experience. Three distinct patterns of balancing design criteria and constraints emerged, including designing for practice, for performance, and for irrelevant goals. The group who designed for practice gave priority to criteria and constraints recorded a higher level of design performance. The study underscores the benefits of integrating action-oriented learning opportunities via engineering design processes in science education. 
    more » « less