The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with functions independent of jasmonates. OPDA involvement in diverse biological processes, from plant defense and stress responses to growth regulation and development, has been documented across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated with stress responses. Here, we summarize what is known about OPDA metabolism and signaling while briefly discussing its jasmonate dependent and independent roles. We also describe open questions, such as the OPDA protein interactome and biological roles of OPDA conjugates.
more »
« less
OPDA, more than just a jasmonate precursor
The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with functions independent of jasmonates. OPDA involvement in diverse biological processes, from plant defense and stress responses to growth regulation and development, has been documented across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated with stress responses. Here, we summarize what is known about OPDA metabolism and signaling while briefly discussing its jasmonate dependent and independent roles. We also describe open questions, such as the OPDA protein interactome and biological roles of OPDA conjugates.
more »
« less
- Award ID(s):
- 2019516
- PAR ID:
- 10389991
- Date Published:
- Journal Name:
- Phytochemistry
- Volume:
- 204
- ISSN:
- 0031-9422
- Page Range / eLocation ID:
- 113432
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene’s role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.more » « less
-
Abstract Plants can send long-distance cell-to-cell signals from a single tissue subjected to stress to the entire plant. This ability is termed “systemic signaling” and is essential for plant acclimation to stress and/or defense against pathogens. Several signaling mechanisms are associated with systemic signaling, including the reactive oxygen species (ROS) wave, calcium wave, hydraulic wave, and electric signals. The ROS wave coordinates multiple physiological, molecular, and metabolic responses among different parts of the plant and is essential for systemic acquired acclimation (SAA) to stress. In addition, it is linked with several plant hormones, including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). However, how these plant hormones modulate the ROS wave and whether they are required for SAA is not clear. Here we report that SA and JA play antagonistic roles in modulating the ROS wave in Arabidopsis (Arabidopsis thaliana). While SA augments the ROS wave, JA suppresses it during responses to local wounding or high light (HL) stress treatments. We further show that ethylene and ABA are essential for regulation of the ROS wave during systemic responses to local wounding treatment. Interestingly, we found that the redox-response protein NONEXPRESSOR OF PATHOGENESIS RELATED PROTEIN 1 is required for systemic ROS accumulation in response to wounding or HL stress, as well as for SAA to HL stress. Taken together, our findings suggest that interplay between JA and SA might regulate systemic signaling and SAA during responses of plants to abiotic stress or wounding.more » « less
-
Abstract RAF-like kinases, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, are central integrators of external and internal signals in plant stress responses and growth regulation. These kinases mediate signaling through multiple hormone pathways, including abscisic acid-dependent and -independent pathways, ethylene signaling, and rapid auxin responses. Unlike typical MAPKKKs that function through kinase cascades, RAF-like kinases primarily employ direct phosphorylation of downstream targets and dynamic subcellular localization to mediate specific physiological responses. Here, we review the emerging roles of RAF-like kinases in Arabidopsis thaliana, highlighting their integrative functions in hormone signaling, stress responses, and growth control. The complex interplay between different RAF-like kinase subgroups and their diverse cellular targets underscores the intricate regulatory mechanisms plants have evolved to coordinate environmental responses with development.more » « less
-
null (Ed.)Brassinosteroids (BRs) play pivotal roles in the regulation of many dimensions of a plant’s life. Hence, through extensive efforts from many research groups, BR signaling has emerged as one of the best-characterized plant signaling pathways. The key molecular players of BR signaling from the cell surface to the nucleus important for the regulation of plant growth and development are well-established. Recent data show that BRs also modulate plant responses to environmental stresses such as drought and pathogen infection. In this mini review, we present the recent progress in BR signaling specifically in the post-translational SUMO modification of BR’s master regulators, BES1/BZR1. We also discuss recent findings on the crosstalk between BR, UV light, and jasmonic acid signaling pathways to balance growth during light stress and pathogen infections. Finally, we describe the current update on the molecular link between BR signaling and intracellular auxin transport that essential for plant development.more » « less
An official website of the United States government

