Background Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America. Results Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize. Conclusions Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.
more »
« less
Metagenomic identification of novel viruses of maize and teosinte in North America
Background: Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America. Results: Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North Ameri- can maize. Conclusions: Metagenomic studies of crop and crop-related species such as this may be useful for the identifica- tion and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.
more »
« less
- Award ID(s):
- 2019516
- PAR ID:
- 10390017
- Date Published:
- Journal Name:
- BMC genomics
- Volume:
- 23
- ISSN:
- 1471-2164
- Page Range / eLocation ID:
- 767
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The diversity of viruses identified from the various niches of the human oral cavity—from saliva to dental plaques to the surface of the tongue—has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).more » « less
-
Abstract Human exposure to pathogenic viruses in environmental waters results in a significant global disease burden. Current microbial water quality monitoring approaches, mainly based on fecal indicator bacteria, insufficiently capture human health impacts posed by pathogenic viruses in water. The emergence of the ‘microbiome era’ and high-throughput metagenome sequencing has led to the discovery of novel human-associated viruses, including both pathogenic and commensal viruses in the human microbiome. The discovery of novel human-associated viruses is often followed by their detection in wastewater, highlighting the great diversity of human-associated viruses potentially present in the water environment. Novel human-associated viruses provide a rich reservoir to develop viral water quality management tools with diverse applications, such as regulating wastewater reuse and monitoring agricultural and recreational waters. Here, we review the pathway from viral discovery to water quality monitoring tool, and highlight select human-associated viruses identified by metagenomics and subsequently detected in the water environment (namely Bocavirus, Cosavirus, CrAssphage, Klassevirus, and Pepper Mild Mottle Virus). We also discuss research needs to enable the application of recently discovered human-associated viruses in water quality monitoring, including investigating the geographic distribution, environmental fate, and viability of potential indicator viruses. Examples suggest that recently discovered human pathogens are likely to be less abundant in sewage, while other human-associated viruses (e.g., bacteriophages or viruses from food) are more abundant but less human-specific. The improved resolution of human-associated viral diversity enabled by metagenomic tools provides a significant opportunity for improved viral water quality management tools.more » « less
-
metaviralSPAdes: Assembly of Viruses From Metagenomic Data Abstract Motivation: Although the set of currently known viruses has been steadily expanding, only a tiny fraction of the Earth's virome has been sequenced so far. Shotgun metagenomic sequencing provides an opportunity to reveal novel viruses but faces the computational challenge of identifying viral genomes that are often difficult to detect in metagenomic assemblies. Results: We describe a metaviralSPAdes tool for identifying viral genomes in metagenomic assembly graphs that is based on analyzing variations in the coverage depth between viruses and bacterial chromosomes. We benchmarked metaviralSPAdes on diverse metagenomic datasets, verified our predictions using a set of virus-specific Hidden Markov Models, and demonstrated that it improves on the state-of-the-art viral identification pipelines. Availability: metaviralSPAdes includes viralAssembly, viralVerify, and viralComplete modules that are available as standalone packages: https://github.com/ablab/spades/tree/metaviral_publication, https://github.com/ablab/viralVerify/ and https://github.com/ablab/viralComplete/. Supplementary information: Supplementary data are available at Bioinformatics online.more » « less
-
Metagenomics has enabled sequencing of viral communities from a myriad of different environments. Viral metagenomic studies routinely uncover sequences with no recognizable homology to known coding regions or genomes. Nevertheless, complete viral genomes have been constructed directly from complex community metagenomes, often through tedious manual curation. To address this, we developed the software tool virMine to identify viral genomes from raw reads representative of viral or mixed (viral and bacterial) communities. virMine automates sequence read quality control, assembly, and annotation. Researchers can easily refine their search for a specific study system and/or feature(s) of interest. In contrast to other viral genome detection tools that often rely on the recognition of viral signature sequences, virMine is not restricted by the insufficient representation of viral diversity in public data repositories. Rather, viral genomes are identified through an iterative approach, first omitting non-viral sequences. Thus, both relatives of previously characterized viruses and novel species can be detected, including both eukaryotic viruses and bacteriophages. Here we present virMine and its analysis of synthetic communities as well as metagenomic data sets from three distinctly different environments: the gut microbiota, the urinary microbiota, and freshwater viromes. Several new viral genomes were identified and annotated, thus contributing to our understanding of viral genetic diversity in these three environments.more » « less
An official website of the United States government

