skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Amplitude Scintillation Severity and Fading Profiles Under Alignment Between GPS Propagation Paths and Equatorial Plasma Bubbles
Abstract Ionospheric scintillation and fading events over low‐latitude regions are often caused by severely depleted geomagnetic field‐aligned structures known as Equatorial Plasma Bubbles. These events are subject of interest to scientific investigations and concern to technological applications. Over the past several years, most of scintillation studies have focused on the dependence of these events on density gradients, location, local time, geomagnetic conditions, and so forth. This work presents a discussion about the role of the alignment between the signal propagation path and the depleted structures or, equivalently, the geomagnetic field lines, on the observed scintillation and deep fading characteristics. Data from three stations (dip latitudes: 16.13°S, 19.87°S, and 22.05°S) located around the Equatorial Ionization Anomaly (EIA) region were used to assess the amplitude scintillation severity and the deep fading events features under aligned and nonaligned conditions. The results show that the alignment condition plays a crucial role in the occurrence of strong scintillation. The study also revealed that, as stations far from the crests of the EIA are considered, the alignment influence seems to increase, and that a combination of strong plasma density fluctuation and increased aligned path is, presumably, the configuration under which the most severe scintillation and drastic deep fading events are observed. The results indicate that this conjunction is typically met in regions somewhat distinct from that with largest plasma density background over the Brazilian region, therefore, strongest scintillation and largest deep fading rates were observed by a station slightly off‐the EIA peak.  more » « less
Award ID(s):
1916055 2122639
PAR ID:
10390066
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
20
Issue:
11
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A coronal mass ejection erupted from the Sun on 21 April 2023 and created a G4 geomagnetic storm on 23 April. NASA's global‐scale observations of the limb and disk (GOLD) imager observed bright equatorial ionization anomaly (EIA) crests at ∼25° Mlat, ∼11° poleward from their average locations, computed by averaging the EIA crests during the previous geomagnetic quiet days (18–22 April) between ∼15°W and 5°W Glon. ReversedC‐shape equatorial plasma bubbles (EPBs) were observed reaching ∼±36° Mlat (∼40°N and ∼30°S Glat) with apex altitudes ∼4,000 km and large westward tilts of ∼52°. Using GOLD's observations EPBs zonal motions are derived. It is observed that the EPBs zonal velocities are eastward near the equator and westward at mid‐latitudes. Model‐predicted prompt penetration electric fields indicate that they may have affected the postsunset pre‐reversal enhancement at equatorial latitudes. Zonal ion drifts from a defense meteorological satellite program satellite suggest that westward neutral winds and perturbed westward ion drifts over mid‐latitudes contributed to the observed latitudinal shear in zonal drifts. 
    more » « less
  2. Abstract The high latitude ionospheric evolution of the May 10‐11, 2024, geomagnetic storm is investigated in terms of Total Electron Content and contextualized with Incoherent Scatter Radar and ionosonde observations. Substantial plasma lifting is observed within the initial Storm Enhanced Density plume with ionospheric peak heights increasing by 150–300 km, reaching levels of up to 630 km. Scintillation is observed within the cusp during the initial expansion phase of the storm, spreading across the auroral oval thereafter. Patch transport into the polar cap produces broad regions of scintillation that are rapidly cleared from the region after a strong Interplanetary Magnetic Field reversal at 2230UT. Strong heating and composition changes result in the complete absence of the F2‐layer on the eleventh, suffocating high latitude convection from dense plasma necessary for Tongue of Ionization and patch formation, ultimately resulting in a suppression of polar cap scintillation on the eleventh. 
    more » « less
  3. Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change. 
    more » « less
  4. Abstract Low‐cost instrumentation combined with volunteering and citizen science educational initiatives allowed the deployment of L‐band scintillation monitors to remote sense areas that are geomagnetically conjugated and located at low‐to‐mid latitudes in the American sector (Quebradillas in Puerto Rico and Santa Maria in Brazil). On 10 and 11 October, 2023, both monitors detected severe scintillations, some reaching dip latitudes beyond 26°N. The observations show conjugacy in the spatio‐temporal evolution of the scintillation‐causing irregularities. With the aid of collocated all‐sky airglow imager observations, it was shown that the observed scintillation event was caused by extreme equatorial plasma bubbles (EPBs) reaching geomagnetic apex altitudes exceeding 2,200 km. The observations suggest that geomagnetic conjugate large‐scale structures produced conditions for the development of intermediate scale (few 100 s of meters) in both hemispheres, leading to scintillation at conjugate locations. Finally, unlike previous reports, it is shown that the extreme EPBs‐driven scintillation reported here developed under geomagnetically quiet conditions. 
    more » « less
  5. Abstract Using NASA's Global‐scale Observations of the Limb and Disk (GOLD) imager, we report nightside ionospheric changes during the G5 super geomagnetic storm of 10 and 11 May 2024. Specifically, the nightside southern crest of the Equatorial Ionization Anomaly (EIA) was observed to merge with the aurora near the southern tip of South America. During the storm, the EIA southern crest was seen moving poleward as fast as 450 m/s. Furthermore, the aurora extended to mid‐latitudes reaching the southern tips of Africa and South America. The poleward shift of the equatorial ionospheric structure and equatorward motion of the aurora means there was no mid‐latitude ionosphere in this region. These observations offer unique insights into the ionospheric response to extreme geomagnetic disturbances, highlighting the complex interplay between solar activity and Earth's upper atmosphere. 
    more » « less