skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An effective online platform for crowd classification of coastal wetland loss
Abstract Wetland loss is increasing rapidly, and there are gaps in public awareness of the problem. By crowdsourcing image analysis of wetland morphology, academic and government studies could be supplemented and accelerated while engaging and educating the public. The Land Loss Lookout (LLL) project crowdsourced mapping of wetland morphology associated with wetland loss and restoration. We demonstrate that volunteers can be trained relatively easily online to identify characteristic wetland morphologies, or patterns present on the landscape that suggest a specific geomorphological process. Results from a case study in coastal Louisiana revealed strong agreement among nonexpert and expert assessments who agreed on classifications at least 83% and at most 94% of the time. Participants self‐reported increased knowledge of wetland loss after participating in the project. Crowd‐identified morphologies are consistent with expectations, although more work is needed to directly compare LLL results with previous studies. This work provides a foundation for using crowd‐based wetland loss analysis to increase public awareness of the issue, and to contribute to land surveys or train machine learning algorithms.  more » « less
Award ID(s):
1816426
PAR ID:
10390086
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Conservation Science and Practice
Volume:
5
Issue:
1
ISSN:
2578-4854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowd-work has increased significantly in recent years, particularly among women from Latin America. However, the specific needs and characteristics of this workforce have not been studied nearly enough. For this reason, we have conducted a series of surveys, questionnaires, and design sessions directly with Latin-American users of crowd-working platforms. Our aim was to create a system to empower crowd-workers with AI enhanced tools for their day-to-day tasks. As a result, we created a customized platform, La Independiente, and two web plugins. This project is unique in that it leverages gender perspective methodologies, AI powered-systems, and public policy analysis to design smart tools that are both professionally useful and culturally relevant. 
    more » « less
  2. Abstract Land use within a watershed impacts stream channel morphology and hydrology and, therefore, in‐stream solute transport processes and associated transient storage mechanisms. This study evaluated transport processes in two contrasting stream sites where channel morphology was influenced by the surrounding land use, land cover, climate and geologic controls: Como Creek, CO, a relatively undisturbed, high gradient, forested stream with a gravel bed and complex channel morphology, and Clear Creek, IA, an incised, low‐gradient stream with low‐permeability substrate draining an agricultural landscape. We performed conservative stream tracer injections at these sites to address the following questions: (1) How does solute transport vary between streams with differing morphologies? and (2) How does solute transport at each stream site change as a function of discharge? We analysed in‐stream tracer time series data and compared results quantifying solute attenuation in surface and subsurface transient storage zones. Significant trends were observed in these metrics with varying discharge conditions at the forested site but not at the agricultural site. There was a broad range of transport mechanisms and evidence of substantial exchange with both surface and hyporheic transient storage in the relatively undisturbed, forested stream. Changing discharge conditions activated or deactivated different solute transport mechanisms in the forested site and greatly impacted advective travel time. Conversely in the simplified agricultural stream, there was a narrow range of solute transport behaviour across flows and predominantly surface transient storage at all measured discharge conditions. These results demonstrate how channel simplification inhibits available solute transport mechanisms across varying discharge conditions. 
    more » « less
  3. Abstract Between the 1780 and 1980s, more than half of the wetlands in the conterminous US were lost. As wetlands have been lost, numerous artificial water features (AWFs), such as stormwater retention ponds, golf course water features, and reservoirs, have been constructed. We contrasted the loss of wetland area and perimeter to the gain of AWF area and perimeter and further explored how this transformation has altered the spatial characteristics of the waterscape. We conducted this analysis in the Tampa Bay Watershed, a large coastal watershed that lost 33% of its wetland area between the 1950s-2007. Trends have been towards fewer, smaller wetlands and more, smaller AWFs. The loss of wetland area far exceeds the gain in AWF area, leading to an overall loss of 23% of the combined wetland and AWF area. However, the loss of wetland perimeter almost equals the gain in AWF perimeter, leading to an overall loss of just 2% of the combined wetland and AWF perimeter. The loss of wetlands and gain of AWFs have predominantly occurred in different geographic locations, with the loss of wetlands predominantly in the headwaters and the gain in AWFs predominantly adjacent to Tampa Bay. Wetlands became further apart, though generally retained their natural distribution, while AWFs became closer to one another and now mirror the more natural wetland distribution. Overall, the physical structure of the waterscape of today is different than in the past, which likely reflects a change in functions performed and related ecological services provided at local and landscape scales. 
    more » « less
  4. Abstract Many large‐scale surveys collect both discrete and continuous variables. Small‐area estimates may be desired for means of continuous variables, proportions in each level of a categorical variable, or for domain means defined as the mean of the continuous variable for each level of the categorical variable. In this paper, we introduce a conditionally specified bivariate mixed‐effects model for small‐area estimation, and provide a necessary and sufficient condition under which the conditional distributions render a valid joint distribution. The conditional specification allows better model interpretation. We use the valid joint distribution to calculate empirical Bayes predictors and use the parametric bootstrap to estimate the mean squared error. Simulation studies demonstrate the superior performance of the bivariate mixed‐effects model relative to univariate model estimators. We apply the bivariate mixed‐effects model to construct estimates for small watersheds using data from the Conservation Effects Assessment Project, a survey developed to quantify the environmental impacts of conservation efforts. We construct predictors of mean sediment loss, the proportion of land where the soil loss tolerance is exceeded, and the average sediment loss on land where the soil loss tolerance is exceeded. In the data analysis, the bivariate mixed‐effects model leads to more scientifically interpretable estimates of domain means than those based on two independent univariate models. 
    more » « less
  5. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less