skip to main content


This content will become publicly available on November 30, 2024

Title: La Independiente: an AI-enhanced Platform Co-Designed with Latin-American Crowd-Workers
Crowd-work has increased significantly in recent years, particularly among women from Latin America. However, the specific needs and characteristics of this workforce have not been studied nearly enough. For this reason, we have conducted a series of surveys, questionnaires, and design sessions directly with Latin-American users of crowd-working platforms. Our aim was to create a system to empower crowd-workers with AI enhanced tools for their day-to-day tasks. As a result, we created a customized platform, La Independiente, and two web plugins. This project is unique in that it leverages gender perspective methodologies, AI powered-systems, and public policy analysis to design smart tools that are both professionally useful and culturally relevant.  more » « less
Award ID(s):
2203212
NSF-PAR ID:
10490575
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Advances in Human Computer Interaction, Journal of the Mexican Associacion on Human-Computer Interaction
Date Published:
Journal Name:
Avances en Interacción Humano-Computadora
Issue:
1
ISSN:
2594-2352
Page Range / eLocation ID:
6; 10
Subject(s) / Keyword(s):
["Co-Design","Generative AI","Latinx workforce","Hispanic workforce"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since 2018, Venezuelans have contributed to 75% of leading AI crowd work platforms’ total workforce, and it is very likely other Latin American and Caribbean (LAC) countries will follow in the context of the post covid-19 economic recovery. While crowd work presents new opportunities for employment in regions of the world where local economies have stagnated, few initiatives have investigated the impact of such work in the Global South through the lens of feminist theory. To address this knowledge gap, we surveyed 55 LAC women on the crowd work platform Toloka to understand their personal goals, professional values, and hardships faced in their work. Our results revealed that most participants shared a desire to hear the experiences of other women crowdworkers, mainly to help them navigate tasks, develop technical and soft skills, and manage their finances more efficiently. Additionally, 75% of the women reported that they completed crowd work tasks on top of caring for their families, while over 50% confirmed they needed to negotiate their family responsibilities to pursue crowd work in the first place. These findings demonstrated a vital component lacking from the experiences of these women was a sense of connection with one another. Based on these observations, we propose a system designed to foster community between LAC women in crowd work to improve their personal and professional advancement. 
    more » « less
  2. rowdsourcing has been used to produce impactful and large-scale datasets for Machine Learning and Artificial Intelligence (AI), such as ImageNET, SuperGLUE, etc. Since the rise of crowdsourcing in early 2000s, the AI community has been studying its computational, system design, and data-centric aspects at various angles. We welcome the studies on developing and enhancing of crowdworker-centric tools, that offer task matching, requester assessment, instruction validation, among other topics. We are also interested in exploring methods that leverage the integration of crowdworkers to improve the recognition and performance of the machine learning models. Thus, we invite studies that focus on shipping active learning techniques, methods for joint learning from noisy data and from crowds, novel approaches for crowd-computer interaction, repetitive task automation, and role separation between humans and machines. Moreover, we invite works on designing and applying such techniques in various domains, including e-commerce and medicine. 
    more » « less
  3. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  4. Crowd workers struggle to earn adequate wages. Given the limited task-related information provided on crowd platforms, workers often fail to estimate how long it would take to complete certain microtasks. Although there exist a few third-party tools and online communities that provide estimates of working times, such information is limited to microtasks that have been previously completed by other workers, and such tasks are usually booked immediately by experienced workers. This paper presents a computational technique for predicting microtask working times (i.e., how much time it takes to complete microtasks) based on past experiences of workers regarding similar tasks. The following two challenges were addressed during development of the proposed predictive model — (i) collection of sufficient training data labeled with accurate working times, and (ii) evaluation and optimization of the prediction model. The paper first describes how 7,303 microtask submission data records were collected using a web browser extension — installed by 83 Amazon Mechanical Turk (AMT) workers — created for characterization of the diversity of worker behavior to facilitate accurate recording of working times. Next, challenges encountered in defining evaluation and/or objective functions have been described based on the tolerance demonstrated by workers with regard to prediction errors. To this end, surveys were conducted in AMT asking workers how they felt regarding prediction errors in working times pertaining to microtasks simulated using an “imaginary” AI system. Based on 91,060 survey responses submitted by 875 workers, objective/evaluation functions were derived for use in the prediction model to reflect whether or not the calculated prediction errors would be tolerated by workers. Evaluation results based on worker perceptions of prediction errors revealed that the proposed model was capable of predicting worker-tolerable working times in 73.6% of all tested microtask cases. Further, the derived objective function contributed to realization of accurate predictions across microtasks with more diverse durations. 
    more » « less
  5. Many AI system designers grapple with how best to collect human input for different types of training data. Online crowds provide a cheap on-demand source of intelligence, but they often lack the expertise required in many domains. Experts offer tacit knowledge and more nuanced input, but they are harder to recruit. To explore this trade off, we compared novices and experts in terms of performance and perceptions on human intelligence tasks in the context of designing a text-based conversational agent. We developed a preliminary chatbot that simulates conversations with someone seeking mental health advice to help educate volunteer listeners at 7cups.com. We then recruited experienced listeners (domain experts) and MTurk novice workers (crowd workers) to conduct tasks to improve the chatbot with different levels of complexity. Novice crowds perform comparably to experts on tasks that only require natural language understanding, such as correcting how the system classifies a user statement. For more generative tasks, like creating new lines of chatbot dialogue, the experts demonstrated higher quality, novelty, and emotion. We also uncovered a motivational gap: crowd workers enjoyed the interactive tasks, while experts found the work to be tedious and repetitive. We offer design considerations for allocating crowd workers and experts on input tasks for AI systems, and for better motivating experts to participate in low-level data work for AI. 
    more » « less