skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Manipulation of Scattering Spectra with Topology of Light and Matter
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.  more » « less
Award ID(s):
2240562
PAR ID:
10390106
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
17
Issue:
3
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract On the basis of the Jones matrix, independent control over the amplitude and phase of light has been demonstrated by combining several meta‐atoms into the supercell of a metasurface. However, due to the intrinsic limitation of a planar achiral structure, the maximum number of independent, complex elements in one Jones matrix is three, giving rise to up to three‐channel amplitude and phase control. In this work, more Jones matrices corresponding to different angles of incidence are proposed to add, so that the degrees of freedom in the amplitude and phase control can be further increased. The supercell of the designed metasurfaces consists of three dielectric nanoblocks with predefined rotation angles and displacements in the 2D space, which can be inversely determined with the help of the genetic algorithm. Empowered by the ability to realize four‐ or even eight‐channel amplitude and phase control, the generation of multiple structured light, including two independent perfect Poincaré beams, two double‐ring perfect Poincaré beams, two perfect Poincaré beam arrays, and four vector vortex beam arrays, is numerically demonstrated. Such novel designs are expected to benefit the development of modern optical applications, including but not limited to optical communications, quantum information, and signal encryption. 
    more » « less
  2. Abstract Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage. 
    more » « less
  3. Vigorous efforts to harness the topological properties of light have enabled a multitude of novel applications. Translating the applications of structured light to higher spatial and temporal resolutions mandates their controlled generation, manipulation, and thorough characterization in the short-wavelength regime. Here, we resort to high-order harmonic generation (HHG) in a noble gas to upconvert near-infrared (IR) vector, vortex, and vector-vortex driving beams that are tailored, respectively, in their spin angular momentum (SAM), orbital angular momentum (OAM), and simultaneously in their SAM and OAM. We show that HHG enables the controlled generation of extreme-ultraviolet (EUV) vector beams exhibiting various spatially dependent polarization distributions, or EUV vortex beams with a highly twisted phase. Moreover, we demonstrate the generation of EUV vector-vortex beams (VVB) bearing combined characteristics of vector and vortex beams. We rely on EUV wavefront sensing to unambiguously affirm the topological charge scaling of the HHG beams with the harmonic order. Interestingly, our work shows that HHG allows for a synchronous controlled manipulation of SAM and OAM. These EUV structured beams bring in the promising scenario of their applications at nanometric spatial and sub-femtosecond temporal resolutions using a table-top harmonic source. 
    more » « less
  4. Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator–metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures’ design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes. 
    more » « less
  5. Resonant excitation of high-index dielectric nanostructures and their coupling with molecular excitons provide great opportunities for engineering adaptable platforms for hybrid functional optical devices. Here, we numerically calculate resonance coupling of nonradiating anapole states to molecular excitons within silicon nanosphere-J-aggregate heterostructures under illumination with radially polarized cylindrical vector beams. The results show that the resonance coupling is accompanied by a scattering peak around the exciton transition frequency, and the anapole state splits into a pair of anticrossing eigenmodes with a mode splitting energy of ≈200meV. We also investigate the resonance coupling as a function of the J-aggregate parameters, such as thickness, exciton transition linewidth, and oscillator strength. Resonant coupling of the anapole states and J-aggregate heterostructures could be a promising platform for future nanophotonic applications such as in information processing and sensing. 
    more » « less