skip to main content


Title: Spin‐Selective Second‐Harmonic Vortex Beam Generation with Babinet‐Inverted Plasmonic Metasurfaces
Abstract

Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage.

 
more » « less
Award ID(s):
1653032 1552871
NSF-PAR ID:
10063627
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
6
Issue:
19
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

     
    more » « less
  2. Abstract

    The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.

     
    more » « less
  3. Abstract

    Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.

     
    more » « less
  4. Abstract

    Light beams carrying orbital angular momentum (OAM) in the form of optical vortices have attracted great interest due to their capability for providing a new dimension and approach to manipulate light–matter interactions. Recently, plasmonics has offered efficient ways to focus vortex beams beyond the diffraction limit. However, unlike in the visible and near‐infrared regime, it is still a big challenge to realize plasmonic vortices at far‐infrared and even longer wavelengths. An effective strategy to create deep‐subwavelength near‐field electromagnetic (EM) vortices operating in the low frequency region is proposed. Taking advantage of the asymmetric spatial distribution of EM field supported by a metallic comb‐shaped waveguide, plasmonic vortex modes that are strongly confined in a well‐designed deep‐subwavelength meta‐particle with desired topological charges can be excited. Such unique phenomena are confirmed by the microwave experiments. An equivalent physical model backed up by the numerical simulations is performed to reveal the underlying mechanism of the plasmonic vortex generation. This spoof‐plasmon assisted focusing of EM waves with OAM may find potentials for functional integrated elements and devices operating in the microwave, terahertz, and even far‐infrared regions.

     
    more » « less
  5. Abstract

    An electrically tunable nonlinear optical device working at near‐infrared wavelength is theoretically and experimentally demonstrated. Ultrahigh optical second‐order nonlinearity from titanium‐nitride‐based coupled metallic quantum wells can be electrically tuned by external electric field. Tunability of second‐order susceptibilityχ(2)reaches a 63% modulation depth with an average tunability of 10.5% per volt. In addition, electro‐optic modulation of second‐harmonic signal is presented by continuous tuning ofχ(2)over a long period of time with high stability. These results provide a new material platform with actively controllable strong nonlinearity for future nonlinear photonic systems, such as ultra‐compact opto‐electronic modulation devices and reconfigurable nonlinear metamaterials and metasurfaces.

     
    more » « less