skip to main content


Title: The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization
We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.  more » « less
Award ID(s):
1942497
NSF-PAR ID:
10390169
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the ACM
Volume:
68
Issue:
3
ISSN:
0004-5411
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of ${n}$ additive bidders whose values for ${m}$ heterogeneous items are drawn independently. For any such instance and any ${\varepsilon > 0}$, we show that it is possible to learn an ${\varepsilon}$-Bayesian Incentive Compatible auction whose expected revenue is within ${\varepsilon}$ of the optimal ${\varepsilon}$-BIC auction from only polynomially many samples. Our approach is based on ideas that hold quite generally, and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that aren't necessarily even subadditive, and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well-understood, our corollary for this case extends slightly the state-of-the-art. 
    more » « less
  2. We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest. 
    more » « less
  3. Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
    more » « less
  4. We design and analyze deterministic and randomized clock auctions for single-parameter domains with downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have been shown to satisfy a list of compelling incentive properties making them a very practical solution for real-world applications, partly because they require very little reasoning from the participating bidders. However, the first results regarding the worst-case performance of deterministic clock auctions from a welfare maximization perspective indicated that they face obstacles even for a seemingly very simple family of instances, leading to a logarithmic inapproximability result; this inapproximability result is information-theoretic and holds even if the auction has unbounded computational power. In this paper we propose a deterministic clock auction that achieves a logarithmic approximation for any downward-closed set system, using black box access to a solver for the underlying optimization problem. This proves that our clock auction is optimal and that the aforementioned family of instances exactly captures the information limitations of deterministic clock auctions. We then move beyond deterministic auctions and design randomized clock auctions that achieve improved approximation guarantees for a generalization of this family of instances, suggesting that the earlier indications regarding the performance of clock auctions may have been overly pessimistic. 
    more » « less
  5. We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we consider settings where bidders' valuations are drawn from correlated distributions that can be captured by Markov Random Fields or Bayesian Networks -- two of the most prominent graphical models. We establish parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in both models, which scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the size of the largest hyper-edge (for Markov Random Fields). We obtain our learnability results through a novel and modular framework that involves first proving a robustness theorem. We show that, given only "approximate distributions" for bidder valuations, we can learn a mechanism whose revenue is nearly optimal simultaneously for all "true distributions" that are close to the ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our framework directly implies the main result of Gonczarowski and Weinberg. When item values are sampled from more general graphical models, we combine our robustness theorem with novel sample complexity results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under an even weaker distribution distance, the Levy distance. 
    more » « less