skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the measurement of S diff splitting caused by lowermost mantle anisotropy
SUMMARY Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean.  more » « less
Award ID(s):
2027077
PAR ID:
10390201
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 900-921
Size(s):
p. 900-921
Sponsoring Org:
National Science Foundation
More Like this
  1. Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean. 
    more » « less
  2. Many regions of the Earth's mantle are seismically anisotropic, including portions of the lowermost mantle, which may indicate deformation due to convective flow. The splitting of ScS phases, which reflect once off the core-mantle boundary (CMB), is commonly measured to identify lowermost mantle anisotropy, although some challenges exist. Here, we use global wavefield simulations to evaluate commonly used approaches to inferring a lowermost mantle contribution to ScS splitting. We show that due to effects of the CMB reflection, only the epicentral distance range between 60° and 70° is appropriate for ScS splitting measurements. For this distance range, splitting is diagnostic of deep mantle anisotropy if no upper mantle anisotropy is present; however, if ScS is also split due to upper mantle anisotropy, the reliable diagnosis of deep mantle anisotropy is challenging. Moreover, even in the case of a homogeneously anisotropic deep mantle region sampled from a single azimuth by multiple ScS waves with different source polarizations (in absence of upper mantle anisotropy), different apparent fast directions are produced. We suggest that ScS splitting should only be measured at null stations and conduct such an analysis worldwide. Our results indicate that seismic anisotropy is globally widespread in the deep mantle. 
    more » « less
  3. Abstract Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America. 
    more » « less
  4. SUMMARY Seismic traveltime anomalies of waves that traverse the uppermost 100–200 km of the outer core have been interpreted as evidence of reduced seismic velocities (relative to radial reference models) just below the core–mantle boundary (CMB). These studies typically investigate differential traveltimes of SmKS waves, which propagate as P waves through the shallowest outer core and reflect from the underside of the CMB m times. The use of SmKS and S(m-1)KS differential traveltimes for core imaging are often assumed to suppress contributions from earthquake location errors and unknown and unmodelled seismic velocity heterogeneity in the mantle. The goal of this study is to understand the extent to which differential SmKS traveltimes are, in fact, affected by anomalous mantle structure, potentially including both velocity heterogeneity and anisotropy. Velocity variations affect not only a wave's traveltime, but also the path of a wave, which can be observed in deviations of the wave's incoming direction. Since radial velocity variations in the outer core will only minimally affect the wave path, in contrast to other potential effects, measuring the incoming direction of SmKS waves provides an additional diagnostic as to the origin of traveltime anomalies. Here we use arrays of seismometers to measure traveltime and direction anomalies of SmKS waves that sample the uppermost outer core. We form subarrays of EarthScope's regional Transportable Array stations, thus measuring local variations in traveltime and direction. We observe systematic lateral variations in both traveltime and incoming wave direction, which cannot be explained by changes to the radial seismic velocity profile of the outer core. Moreover, we find a correlation between incoming wave direction and traveltime anomaly, suggesting that observed traveltime anomalies may be caused, at least in part, by changes to the wave path and not solely by perturbations in outer core velocity. Modelling of 1-D ray and 3-D wave propagation in global 3-D tomographic models of mantle velocity anomalies match the trend of the observed traveltime anomalies. Overall, we demonstrate that observed SmKS traveltime anomalies may have a significant contribution from 3-D mantle structure, and not solely from outer core structure. 
    more » « less
  5. Qualitative and quantitative analysis of seismic waveforms sensitive to the core–mantle boundary (CMB) region reveal the presence of ultralow-velocity zones (ULVZs) that have a strong decrease in compressional (P) and shear (S) wave velocity, and an increase in density within thin structures. However, understanding their physical origin and relation to the other large-scale structures in the lowermost mantle are limited due to an incomplete mapping of ULVZs at the CMB. The SKS and SPdKS seismic waveforms is routinely used to infer ULVZ presence, but has thus far only been used in a limited epicentral distance range. As the SKS/SPdKS wavefield interacts with a ULVZ it generates additional seismic arrivals, thus increasing the complexity of the recorded wavefield. Here, we explore utilization of the multi-scale sample entropy method to search for ULVZ structures. We investigate the feasibility of this approach through analysis of synthetic seismograms computed for PREM, 1-, 2.5-, and 3-D ULVZs as well as heterogeneous structures with a strong increase in velocity in the lowermost mantle in 1- and 2.5-D. We find that the sample entropy technique may be useful across a wide range of epicentral distances from 100° to 130°. Such an analysis, when applied to real waveforms, could provide coverage of roughly 85% by surface area of the CMB. 
    more » « less