skip to main content


Title: ScS shear-wave splitting in the lowermost mantle: Practical challenges and new global measurements

Many regions of the Earth's mantle are seismically anisotropic, including portions of the lowermost mantle, which may indicate deformation due to convective flow. The splitting of ScS phases, which reflect once off the core-mantle boundary (CMB), is commonly measured to identify lowermost mantle anisotropy, although some challenges exist. Here, we use global wavefield simulations to evaluate commonly used approaches to inferring a lowermost mantle contribution to ScS splitting. We show that due to effects of the CMB reflection, only the epicentral distance range between 60° and 70° is appropriate for ScS splitting measurements. For this distance range, splitting is diagnostic of deep mantle anisotropy if no upper mantle anisotropy is present; however, if ScS is also split due to upper mantle anisotropy, the reliable diagnosis of deep mantle anisotropy is challenging. Moreover, even in the case of a homogeneously anisotropic deep mantle region sampled from a single azimuth by multiple ScS waves with different source polarizations (in absence of upper mantle anisotropy), different apparent fast directions are produced. We suggest that ScS splitting should only be measured at null stations and conduct such an analysis worldwide. Our results indicate that seismic anisotropy is globally widespread in the deep mantle.

 
more » « less
Award ID(s):
2026917
PAR ID:
10564809
Author(s) / Creator(s):
;
Publisher / Repository:
Seismica
Date Published:
Journal Name:
Seismica
Volume:
3
Issue:
1
ISSN:
2816-9387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean. 
    more » « less
  2. SUMMARY

    Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean.

     
    more » « less
  3. SUMMARY

    Determinations of seismic anisotropy, or the dependence of seismic wave velocities on the polarization or propagation direction of the wave, can allow for inferences on the style of deformation and the patterns of flow in the Earth’s interior. While it is relatively straightforward to resolve seismic anisotropy in the uppermost mantle directly beneath a seismic station, measurements of deep mantle anisotropy are more challenging. This is due in large part to the fact that measurements of anisotropy in the deep mantle are typically blurred by the potential influence of upper mantle and/or crustal anisotropy beneath a seismic station. Several shear wave splitting techniques are commonly used that attempt resolve seismic anisotropy in deep mantle by considering the presence of multiple anisotropic layers along a raypath. Examples include source-side S-wave splitting, which is used to characterize anisotropy in the deep upper mantle and mantle transition zone beneath subduction zones, and differential S-ScS and differential SKS-SKKS splitting, which are used to study anisotropy in the D″ layer at the base of the mantle. Each of these methods has a series of assumptions built into them that allow for the consideration of multiple regions of anisotropy. In this work, we systematically assess the accuracy of these assumptions. To do this, we conduct global wavefield modelling using the spectral element solver AxiSEM3D. We compute synthetic seismograms for earth models that include seismic anisotropy at the periods relevant for shear wave splitting measurements (down to 5 s). We apply shear wave splitting algorithms to our synthetic seismograms and analyse whether the assumptions that underpin common measurement techniques are adequate, and whether these techniques can correctly resolve the anisotropy incorporated in our models. Our simulations reveal some inaccuracies and limitations of reliability in various methods. Specifically, explicit corrections for upper mantle anisotropy, which are often used in source-side direct S splitting and S-ScS differential splitting, are typically reliable for the fast polarization direction ϕ but not always for the time lag δt, and their accuracy depends on the details of the upper mantle elastic tensor. We find that several of the assumptions that underpin the S-ScS differential splitting technique are inaccurate under certain conditions, and we suggest modifications to traditional S-ScS differential splitting approaches that lead to improved reliability. We investigate the reliability of differential SKS-SKKS splitting intensity measurements as an indicator for lowermost mantle anisotropy and find that the assumptions built into the splitting intensity formula can break down for strong splitting cases. We suggest some guidelines to ensure the accuracy of SKS-SKKS splitting intensity comparisons that are often used to infer lowermost mantle anisotropy. Finally, we suggest a new strategy to detect lowermost mantle anisotropy which does not rely on explicit upper mantle corrections and use this method to analyse the lowermost mantle beneath east Asia.

     
    more » « less
  4. Abstract

    Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America.

     
    more » « less
  5. SUMMARY

    Iceland represents one of the most well-known examples of hotspot volcanism, but the details of how surface volcanism connects to geodynamic processes in the deep mantle remain poorly understood. Recent work has identified evidence for an ultra-low velocity zone in the lowermost mantle beneath Iceland and argued for a cylindrically symmetric upwelling at the base of a deep mantle plume. This scenario makes a specific prediction about flow and deformation in the lowermost mantle, which can potentially be tested with observations of seismic anisotropy. Here we present an investigation of seismic anisotropy in the lowermost mantle beneath Iceland, using differential shear wave splitting measurements of S–ScS and SKS–SKKS phases. We apply our techniques to waves propagating at multiple azimuths, with the goal of gaining good geographical and azimuthal coverage of the region. Practical limitations imposed by the suboptimal distribution of global seismicity at the relevant distance ranges resulted in a relatively small data set, particularly for S–ScS. Despite this, however, our measurements of ScS splitting due to lowermost mantle anisotropy clearly show a rotation of the fast splitting direction from nearly horizontal for two sets of paths that sample away from the low velocity region (implying VSH > VSV) to nearly vertical for a set of paths that sample directly beneath Iceland (implying VSV > VSH). We also find evidence for sporadic SKS–SKKS discrepancies beneath our study region; while the geographic distribution of discrepant pairs is scattered, those pairs that sample closest to the base of the Iceland plume tend to be discrepant. Our measurements do not uniquely constrain the pattern of mantle flow. However, we carried out simple ray-theoretical forward modelling for a suite of plausible anisotropy mechanisms, including those based on single-crystal elastic tensors, those obtained via effective medium modelling for partial melt scenarios, and those derived from global or regional models of flow and texture development in the deep mantle. These simplified models do not take into account details such as possible transitions in anisotropy mechanism or deformation regime, and test a simplified flow field (vertical flow beneath the plume and horizontal flow outside it) rather than more detailed flow scenarios. Nevertheless, our modelling results demonstrate that our ScS splitting observations are generally consistent with a flow scenario that invokes nearly vertical flow directly beneath the Iceland hotspot, with horizontal flow just outside this region.

     
    more » « less