skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmarking differential abundance analysis methods for correlated microbiome sequencing data
Abstract Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. Current microbiome studies frequently generate correlated samples from different microbiome sampling schemes such as spatial and temporal sampling. In the past decade, a number of DAA tools for correlated microbiome data (DAA-c) have been proposed. Disturbingly, different DAA-c tools could sometimes produce quite discordant results. To recommend the best practice to the field, we performed the first comprehensive evaluation of existing DAA-c tools using real data-based simulations. Overall, the linear model-based methods LinDA, MaAsLin2 and LDM are more robust than methods based on generalized linear models. The LinDA method is the only method that maintains reasonable performance in the presence of strong compositional effects.  more » « less
Award ID(s):
2113360
PAR ID:
10390210
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Briefings in Bioinformatics
Volume:
24
Issue:
1
ISSN:
1467-5463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well known that the microbiome data are ridden with outliers and have heavy distribution tails, but the impact of outliers and heavy-tailedness has yet to be examined systematically. This paper investigates the impact of outliers and heavy-tailedness on differential abundance analysis (DAA) using the linear models for the differential abundance analysis (LinDA) method and proposes effective strategies to mitigate their influence. The presence of outliers and heavy-tailedness can significantly decrease the power of LinDA. We investigate various techniques to address outliers and heavy-tailedness, including generalizing LinDA into a more flexible framework that allows for the use of robust regression and winsorizing the data before applying LinDA. Our extensive numerical experiments and real-data analyses demonstrate that robust Huber regression has overall the best performance in addressing outliers and heavy-tailedness. 
    more » « less
  2. Abstract Background Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. Numerous DAA tools have been proposed in the past decade addressing the special characteristics of microbiome data such as zero inflation and compositional effects. Disturbingly, different DAA tools could sometimes produce quite discordant results, opening to the possibility of cherry-picking the tool in favor of one’s own hypothesis. To recommend the best DAA tool or practice to the field, a comprehensive evaluation, which covers as many biologically relevant scenarios as possible, is critically needed. Results We performed by far the most comprehensive evaluation of existing DAA tools using real data-based simulations. We found that DAA methods explicitly addressing compositional effects such as ANCOM-BC, Aldex2, metagenomeSeq (fitFeatureModel), and DACOMP did have improved performance in false-positive control. But they are still not optimal: type 1 error inflation or low statistical power has been observed in many settings. The recent LDM method generally had the best power, but its false-positive control in the presence of strong compositional effects was not satisfactory. Overall, none of the evaluated methods is simultaneously robust, powerful, and flexible, which makes the selection of the best DAA tool difficult. To meet the analysis needs, we designed an optimized procedure, ZicoSeq, drawing on the strength of the existing DAA methods. We show that ZicoSeq generally controlled for false positives across settings, and the power was among the highest. Application of DAA methods to a large collection of real datasets revealed a similar pattern observed in simulation studies. Conclusions Based on the benchmarking study, we conclude that none of the existing DAA methods evaluated can be applied blindly to any real microbiome dataset. The applicability of an existing DAA method depends on specific settings, which are usually unknown a priori. To circumvent the difficulty of selecting the best DAA tool in practice, we design ZicoSeq, which addresses the major challenges in DAA and remedies the drawbacks of existing DAA methods. ZicoSeq can be applied to microbiome datasets from diverse settings and is a useful DAA tool for robust microbiome biomarker discovery. 
    more » « less
  3. Abstract Differential abundance analysis is at the core of statistical analysis of microbiome data. The compositional nature of microbiome sequencing data makes false positive control challenging. Here, we show that the compositional effects can be addressed by a simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only requires fitting linear regression models on the centered log-ratio transformed data, and correcting the bias due to compositional effects. We show that LinDA enjoys asymptotic FDR control and can be extended to mixed-effect models for correlated microbiome data. Using simulations and real examples, we demonstrate the effectiveness of LinDA. 
    more » « less
  4. Abstract <bold>Background</bold>Microorganisms are found in almost every environment, including soil, water, air and inside other organisms, such as animals and plants. While some microorganisms cause diseases, most of them help in biological processes such as decomposition, fermentation and nutrient cycling. Much research has been conducted on the study of microbial communities in various environments and how their interactions and relationships can provide insight into various diseases. Co-occurrence network inference algorithms help us understand the complex associations of micro-organisms, especially bacteria. Existing network inference algorithms employ techniques such as correlation, regularized linear regression, and conditional dependence, which have different hyper-parameters that determine the sparsity of the network. These complex microbial communities form intricate ecological networks that are fundamental to ecosystem functioning and host health. Understanding these networks is crucial for developing targeted interventions in both environmental and clinical settings. The emergence of high-throughput sequencing technologies has generated unprecedented amounts of microbiome data, necessitating robust computational methods for network inference and validation. <bold>Results</bold>Previous methods for evaluating the quality of the inferred network include using external data, and network consistency across sub-samples, both of which have several drawbacks that limit their applicability in real microbiome composition data sets. We propose a novel cross-validation method to evaluate co-occurrence network inference algorithms, and new methods for applying existing algorithms to predict on test data. Our method demonstrates superior performance in handling compositional data and addressing the challenges of high dimensionality and sparsity inherent in real microbiome datasets. The proposed framework also provides robust estimates of network stability. <bold>Conclusions</bold>Our empirical study shows that the proposed cross-validation method is useful for hyper-parameter selection (training) and comparing the quality of inferred networks between different algorithms (testing). This advancement represents a significant step forward in microbiome network analysis, providing researchers with a reliable tool for understanding complex microbial interactions. The method’s applicability extends beyond microbiome studies to other fields where network inference from high-dimensional compositional data is crucial, such as gene regulatory networks and ecological food webs. Our framework establishes a new standard for validation in network inference, potentially accelerating discoveries in microbial ecology and human health. 
    more » « less
  5. Software depends on upstream projects that regularly fix vulnerabilities, but the documentation of those vulnerabilities is often unreliable or unavailable. Automating the collection of existing vulnerability fixes is essential for downstream projects to reliably update their dependencies due to the sheer number of dependencies in modern software. Prior efforts rely solely on incomplete databases or imprecise or inaccurate statistical analysis of upstream repositories. In this paper, we introduce Differential Alert Analysis (DAA) to discover vulnerability fixes in software projects. In contrast to statistical analysis, DAA leverages static analysis security testing (SAST) tools, which reason over code context and semantics. We provide a language-independent implementation of DAA and show that for Python and Java based projects, DAA has high precision for a ground-truth dataset of vulnerability fixes — even with noisy and low-precision SAST tools. We then use DAA in two large-scale empirical studies covering several prominent ecosystems, finding hundreds of resolved alerts, including many never publicly disclosed. DAA thus provides a powerful, accurate primitive for software projects, code analysis tools, vulnerability databases, and researchers to characterize and enhance the security of software supply chains. 
    more » « less