Droplet microfluidics has become an indispensable tool for biomedical research and lab-on-a-chip applications owing to its unprecedented throughput, precision, and cost-effectiveness. Although droplets can be generated and screened in a high-throughput manner, the inability to label the inordinate amounts of droplets hinders identifying the individual droplets after generation. Herein, we demonstrate an acoustofluidic platform that enables on-demand, real-time dispensing, and deterministic coding of droplets based on their volumes. By dynamically splitting the aqueous flow using an oil jet triggered by focused traveling surface acoustic waves, a sequence of droplets with deterministic volumes can be continuously dispensed at a throughput of 100 Hz. These sequences encode barcoding information through the combination of various droplet lengths. As a proof-of-concept, we encoded droplet sequences into end-to-end packages ( e.g. , a series of 50 droplets), which consisted of an address barcode with binary volumetric combinations and a sample package with consistent volumes for hosting analytes. This acoustofluidics-based, deterministic droplet coding technique enables the tagging of droplets with high capacity and high error-tolerance, and can potentially benefit various applications involving single cell phenotyping and multiplexed screening.
more »
« less
Phase-Optimized Peristaltic Pumping by Integrated Microfluidic Logic
Microfluidic droplet generation typically entails an initial stabilization period on the order of minutes, exhibiting higher variation in droplet volume until the system reaches monodisperse production. The material lost during this period can be problematic when preparing droplets from limited samples such as patient biopsies. Active droplet generation strategies such as antiphase peristaltic pumping effectively reduce stabilization time but have required off-chip control hardware that reduces system accessibility. We present a fully integrated device that employs on-chip pneumatic logic to control phase-optimized peristaltic pumping. Droplet generation stabilizes in about a second, with only one or two non-uniform droplets produced initially.
more »
« less
- PAR ID:
- 10390285
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 1784
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Double emulsions with core‐shell structures are versatile materials used in applications such as cell culture, drug delivery, and materials synthesis. A droplet library with precisely controlled dimensions and properties would streamline screening and optimization for specific applications. While microfluidic droplet generation offers high precision, it is typically labor‐intensive and sensitive to disturbances, requiring continuous operator intervention. To address these limitations, we present an artificial intelligence (AI)‐empowered automated double emulsion droplet library generator. This system integrates a convolutional neural network (CNN)‐based object detection model, decision‐making, and feedback control algorithms to automate droplet generation and collection. The system monitors droplet generation every 171 ms—faster than a Formula 1 driver's reaction time—ensuring rapid response to disturbances and consistent production of single‐core double emulsions. It autonomously generates libraries of 25 distinct monodisperse droplets with user‐defined properties. This automation reduces labor and waste, enhances precision, and supports rapid and reliable droplet library generation. We anticipate that this platform will accelerate discovery and optimization in biomedical, biological, and materials research.more » « less
-
A prototype aerosol detection system is presented that is designed to accurately and quickly measure the concentration of selected inorganic ions in the atmosphere. The aerosol detection system combines digital microfluidics technology, aerosol impaction and chemical detection integrated on the same chip. Target compounds are the major inorganic aerosol constituents: sulfate, nitrate and ammonium. The digital microfluidic system consists of top and bottom plates that sandwich a fluid layer. Nozzles for an inertial impactor are built into the top plate according to known, scaling principles. The deposited air particles are densely concentrated in well-defined deposits on the bottom plate containing droplet actuation electrodes of the chip in fixed areas. The aerosol collection efficiency for particles larger than 100 nm in diameter was higher than 95%. After a collection phase, deposits are dissolved into a scanning droplet. Due to a sub-microliter droplet size, the obtained extract is highly concentrated. Droplets then pass through an air/oil interface on chip for colorimetric analysis by spectrophotometry using optical fibers placed between the two plates of the chip. To create a standard curve for each analyte, six different concentrations of liquid standards were chosen for each assay and dispensed from on-chip reservoirs. The droplet mixing was completed in a few seconds and the final droplet was transported to the detection position as soon as the mixing was finished. Limits of detection (LOD) in the final droplet were determined to be 11 ppm for sulfate and 0.26 ppm for ammonium. For nitrate, it was impossible to get stable measurements. The LOD of the on-chip measurements for sulfate was close to that obtained by an off-chip method using a Tecan spectrometer. LOD of the on-chip method for ammonium was about five times larger than what was obtained with the off-chip method. For the current impactor collection air flow (1 L/min) and 1 h collection time, the converted LODs in air were: 0.275 μg/m3 for sulfate, 6.5 ng/m3 for ammonium, sufficient for most ambient air monitoring applications.more » « less
-
Recent advances in transcriptomic analysis at single-cell resolution reveal cell-to-cell heterogeneity in a biological sample with unprecedented resolution. Partitioning single cells in individual micro-droplets and harvesting each cell's mRNA molecules for next-generation sequencing has proven to be an effective method for profiling transcriptomes from a large number of cells at high throughput. However, the assays to recover the full transcriptomes are time-consuming in sample preparation and require expensive reagents and sequencing cost. Many biomedical applications, such as pathogen detection, prefer highly sensitive, reliable and low-cost detection of selected genes. Here, we present a droplet-based microfluidic platform that permits seamless on-chip droplet sorting and merging, which enables completing multi-step reaction assays within a short time. By sequentially adding lysis buffers and reactant mixtures to micro-droplet reactors, we developed a novel workflow of single-cell reverse transcription loop-mediated-isothermal amplification (scRT-LAMP) to quantify specific mRNA expression levels in different cell types within one hour. Including single cell encapsulation, sorting, lysing, reactant addition, and quantitative mRNA detection, the fully on-chip workflow provides a rapid, robust, and high-throughput experimental approach for a wide variety of biomedical studies.more » « less
-
null (Ed.)We present a method to photo-tag individual microfluidic droplets for latter selection by passive sorting. The use of a specific surfactant leads to the interfacial tension to be very sensitive to droplet pH. The photoexcitation of droplets containing a photoacid, pyranine, leads to a decrease in droplet pH. The concurrent increase in droplet interfacial tension enables the passive selection of irradiated droplets. The technique is used to select individual droplets within a droplet array as illuminated droplets remain in the wells while other droplets are eluted by the flow of the external oil. This method was used to select droplets in an array containing cells at a specific stage of apoptosis. The technique is also adaptable to continuous-flow sorting. By passing confined droplets over a microfabricated trench positioned diagonally in relation to the direction of flow, photo-tagged droplets were directed toward a different chip exit based on their lateral movement. The technique can be performed on a conventional fluorescence microscope and uncouples the observation and selection of droplets, thus enabling the selection on a large variety of signals, or based on qualitative user-defined features.more » « less