- Award ID(s):
- 1841509
- NSF-PAR ID:
- 10390303
- Date Published:
- Journal Name:
- Proceedings from the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2022)
- Page Range / eLocation ID:
- 1-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this work, we apply theoretical, computational and experimental fluid dynamics to characterize hydrodynamics micro-vortices formation in the dispersed phase at the flow-focusing microfluidic droplet generation junction. This interfacial hydrodynamic method can be exploited to trap cells inside the micro-vortices and later release them in a one-to-one manner to achieve high efficiency single-cell encapsulation inside droplets. This passive trap and release mechanism is controlled by the distance between the closed vortex streamline and the liquid-liquid interface (dgap) and, thus, fundamental understanding of the micro-vortices and parameters affecting their formation, trajectory and magnitude is necessary to achieve effective one-to-one encapsulation.more » « less
-
Encapsulation of single cells in a thin hydrogel provides a more precise control of stem cell niches and better molecular transport. Despite the recent advances in microfluidic technologies to allow encapsulation of single cells, existing methods rely on special crosslinking agents that are pre-coated on the cell surface and subject to the variation of the cell membrane, which limits their widespread adoption. This work reports a high-throughput single-cell encapsulation method based on the “tip streaming” mode of alternating current (AC) electrospray, with encapsulation efficiencies over 80% after tuned centrifugation. Dripping with multiple cells is curtailed due to gating by the sharp conic meniscus of the tip streaming mode that only allows one cell to be ejected at a time. Moreover, the method can be universally applied to both natural and synthetic hydrogels, as well as various cell types, including human multipotent mesenchymal stromal cells (hMSCs). Encapsulated hMSCs maintain good cell viability over an extended culture period and exhibit robust differentiation potential into osteoblasts and adipocytes. Collectively, electrically induced tip streaming enables high-throughput encapsulation of single cells with high efficiency and universality, which is applicable for various applications in cell therapy, pharmacokinetic studies, and regenerative medicine.more » « less
-
The wide-scale use of liposomal delivery systems is challenged by difficulties in obtaining potent liposomal suspensions. Passive and active loading strategies have been proposed to formulate drug encapsulated liposomes but are limited by low efficiencies (passive) or high drug specificities (active). Here, we present an efficient and universal loading strategy for synthesizing therapeutic liposomes. Integrating a thermal equilibration technique with our unique liposome synthesis approach, co-loaded targeting nanovesicles can be engineered in a scalable manner with potencies 200-fold higher than typical passive encapsulation techniques. We demonstrate this capability through simultaneous co-loading of hydrophilic and hydrophobic small molecules and targeted delivery of liposomal Doxorubicin to metastatic breast cancer cell line MDA-MB-231. Molecular dynamic simulations are used to explain interactions between Doxorubicin and liposome membrane during thermal equilibration. By addressing the existing challenges, we have developed an unparalleled approach that will facilitate the formulation of novel theranostic and pharmaceutical strategies.more » « less
-
Abstract Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real‐time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene‐laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly‐tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6‐day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real‐time reverse transcription‐quantitative polymerase chain reaction and secondarily with enzyme‐linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene‐polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long‐term encapsulation of neural cells in alginate and 6‐day exposure to graphene also leads to changes in gene expressions.
-
Abstract Poly(lactide‐
co ‐glycolide) (PLGA) has been widely used as a tissue engineering scaffold. However, conventional PLGA scaffolds are not injectable, and do not support direct cell encapsulation, leading to poor cell distribution in 3D. Here, a method for fabricating injectable and intercrosslinkable PLGA microribbon‐based macroporous scaffolds as 3D stem cell niche is reported. PLGA is first fabricated into microribbon‐shape building blocks with tunable width using microcontact printing, then coated with fibrinogen to enhance solubility and injectability using aqueous solution. Upon mixing with thrombin, firbornogen‐coated PLGA microribbons can intercrosslink into 3D scaffolds. When subject to cyclic compression, PLGA microribbon scaffolds exhibit great shock‐absorbing capacity and return to their original shape, while conventional PLGA scaffolds exhibit permanent deformation after one cycle. Using human mesenchymal stem cells (hMSCs) as a model cell type, it is demonstrated that PLGA μRB scaffolds support homogeneous cell encapsulation, and robust cell spreading and proliferation in 3D. After 28 days of culture in osteogenic medium, hMSC‐seeded PLGA μRB scaffolds exhibit an increase in compressive modulus and robust bone formation as shown by staining of alkaline phosphatase, mineralization, and collagen. Together, the results validate PLGA μRBs as a promising injectable, macroporous, non‐hydrogel‐based scaffold for cell delivery and tissue regeneration applications.