skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Macromolecular Engineering and Additive Manufacturing of Polyisobutylene‐Based Thermoplastic Elastomers. II. The Poly(styrene‐ b ‐isobutylene‐ b ‐styrene)/Poly(phenylene oxide) System
Abstract

This series of publications describes research rendering soft polyisobutylene (PIB)‐based thermoplastic elastomers 3D printable by blending with rigid chemically compatible thermoplastics. The molecular structure, morphology, physical properties, and 3D printability of such blends have been systematically investigated. The authors' first report was concerned with the rendering of soft poly(styrene‐b‐isobutylene‐b‐styrene) (SIBS) 3D printable by blending with rigid polystyrene (PS). Here they report the macromolecular engineering of SIBS/polyphenylene oxide (PPO) blends for 3D printing. PPO, a rigid high‐performance thermoplastic, is compatible with the hard PS block in SIBS; however, neither PPO nor SIBS can be directly 3D printed. The microphase‐separated structures and physical properties of SIBS/PPO blends are systematically tuned by controlling blending ratios and molecular weights. Suitable composition ranges and desirable properties of SIBS/PPO blends for 3D printing are optimized. The morphology and properties of SIBS/PPO blends are characterized by an ensemble of techniques, including atomic force microscopy, small‐angle X‐ray scattering, and thermal and mechanical properties testing. The elucidation of processing‐structure‐property relationship of SIBS/PPO blends is essential for 3D printing and advanced manufacturing of high‐performance polymer systems.

 
more » « less
Award ID(s):
2017845
PAR ID:
10390325
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Membranes are prepared by self‐assembly and casting of 5 and 13 wt% poly(styrene‐b‐butadiene‐b‐styrene) (PS‐b‐PB‐b‐PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution‐casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time‐resolved grazing incident small angle X‐ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air–solution interface on the morphology formation. The thin PS‐b‐PB‐b‐PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m−2h−1bar−1, compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

     
    more » « less
  2. ABSTRACT

    Sulfonated, block copolymers have traditionally been studied for applications in fuel cells and chemical protective clothing, among others. As such, most investigations have focused on the evaluation of transport properties and the selectivity and permeability of the polymer membranes. This work, however, focuses on the electrical characterization of sulfonated poly(styrene–isobutylene–styrene) (SIBS) triblock copolymer thin films. More specifically, the dielectric properties of SIBS are evaluated as a function of critical parameters such as frequency, sulfonation percent, and the polymer concentration. The results show that the dielectric constant increases with sulfonation percent and polymer concentration to values as high as 13,600. This work also provides insights into the correlation of SIBS electrical properties with its chemical structure and morphology. The structure–property relationship is derived through a combination of techniques including: elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 45662.

     
    more » « less
  3. Abstract

    This work discusses the effect of isopropyl phosphate (IP) on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) as membranes for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of SIBS sulfonation level (i.e., 24, 34, 49, and 84 mol %) and IP loading (i.e., 1, 3, 5, 11, and 15 wt %). A comprehensive material characterization study (e.g.,FTIR, TGA, AFM, and SAXS) was performed to confirm the presence of the phosphate groups in the polymer matrix, assess the thermal stability of the proton‐exchange membranes (PEMs), and understand how the unique interactions between the phosphate and sulfonic groups influenced the nanostructure of SO3H SIBS. The transport properties, water absorption capabilities (i.e.,swelling ratio, water uptake, etc.), oxidative stability, and ion‐exchange capacity (IEC) were performed to evaluate the impact of IP on the properties of the resulting solvent‐casted membranes. Results suggest that the morphology, thermal stability, and vapor permeability are governed by the sulfonation level, whereas the IEC, oxidative stability, water absorption capabilities, and the rest of the transport properties are dominated by the ionic content (i.e.,sulfonic and phosphate groups) and their synergistic effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47009.

     
    more » « less
  4. ABSTRACT

    This study discusses the effect of carboxylated (COOH) and phosphonated (PO3H2) single‐walled carbon nanotubes (SWCNTs) on the transport properties of sulfonated poly(styrene‐isobutylene‐styrene) (SO3H SIBS) as polymer nanocomposite membranes (PNMs) for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of sulfonation level of SIBS, SWCNTs functionalization and loading. A comprehensive materials characterization study was performed to understand the interactions between the nanofillers and the functionalized polymer matrix, and to determine the effect of their incorporation on the resulting nanostructure of the PNMs. Results indicate that the sulfonation level is the variable that dictates nanofiller dispersion, mechanical properties, water absorption capabilities, morphology, and oxidative stability of SO3H SIBS. Meanwhile, the nanofiller loading and functionalization influenced the transport properties. The nanofillers reduced methanol permeation. PO3H2SWCNTs increased the proton conductivity but at a high sulfonation level (i.e.,90 mol %), the ionic interconnectivity caused a more complex morphology decreasing the transport of protons. Optimal selectivity in transport properties were found with a sulfonation level of 61 mol % and a PO3H2SWCNTs loading of 1.0 wt. % for DMFC and 0.5 wt. % for CBPC due to changes in morphology and the unique transport mechanism of permeants through the PNMs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2475–2495

     
    more » « less
  5. The nano- and micron scale morphology of poly(3-hexylthiophene) (P3HT) and polystyrene-block-polyisoprene-block-polystyrene (PS–PI–PS) elastomeric blends is investigated through the use of ultra-small and small angle X-ray and neutron scattering (USAXS, SAXS, SANS). It is demonstrated that loading P3HT into elastomer matrices is possible with little distortion of the elastomeric structure up to a loading of ∼5 wt%. Increased loadings of conjugated polymer is found to significantly distort the matrix structure. Changes in processing conditions are also found to affect the blend morphology with especially strong dependence on processing temperature. Processing temperatures above the glass transition temperature (Tg) of polystyrene and the melting temperature (Tm) of the conjugated polymer additive (P3HT) creates significantly more organized mesophase domains. P3HT blends with PS–PI–PS can also be flow-aligned through processing, which results in an anisotropic structure that could be useful for the generation of anisotropic properties (e.g. conductivity). Moreover, the extent of flow alignment is significantly affected by the P3HT loading in the PS–PI–PS matrix. The work adds insight to the morphological understanding of a complex P3HT and PS–PI–PS polymer blend as conjugated polymer is added to the system. We also provide studies isolating the effect of processing changes aiding in the understanding of the structural changes in this elastomeric conjugated polymer blend. 
    more » « less