The nano- and micron scale morphology of poly(3-hexylthiophene) (P3HT) and polystyrene-block-polyisoprene-block-polystyrene (PS–PI–PS) elastomeric blends is investigated through the use of ultra-small and small angle X-ray and neutron scattering (USAXS, SAXS, SANS). It is demonstrated that loading P3HT into elastomer matrices is possible with little distortion of the elastomeric structure up to a loading of ∼5 wt%. Increased loadings of conjugated polymer is found to significantly distort the matrix structure. Changes in processing conditions are also found to affect the blend morphology with especially strong dependence on processing temperature. Processing temperatures above the glass transition temperature (Tg) of polystyrene and the melting temperature (Tm) of the conjugated polymer additive (P3HT) creates significantly more organized mesophase domains. P3HT blends with PS–PI–PS can also be flow-aligned through processing, which results in an anisotropic structure that could be useful for the generation of anisotropic properties (e.g. conductivity). Moreover, the extent of flow alignment is significantly affected by the P3HT loading in the PS–PI–PS matrix. The work adds insight to the morphological understanding of a complex P3HT and PS–PI–PS polymer blend as conjugated polymer is added to the system. We also provide studies isolating the effect of processing changes aiding in the understanding of the structural changes in this elastomeric conjugated polymer blend.
more »
« less
Macromolecular Engineering and Additive Manufacturing of Polyisobutylene‐Based Thermoplastic Elastomers. II. The Poly(styrene‐ b ‐isobutylene‐ b ‐styrene)/Poly(phenylene oxide) System
Abstract This series of publications describes research rendering soft polyisobutylene (PIB)‐based thermoplastic elastomers 3D printable by blending with rigid chemically compatible thermoplastics. The molecular structure, morphology, physical properties, and 3D printability of such blends have been systematically investigated. The authors' first report was concerned with the rendering of soft poly(styrene‐b‐isobutylene‐b‐styrene) (SIBS) 3D printable by blending with rigid polystyrene (PS). Here they report the macromolecular engineering of SIBS/polyphenylene oxide (PPO) blends for 3D printing. PPO, a rigid high‐performance thermoplastic, is compatible with the hard PS block in SIBS; however, neither PPO nor SIBS can be directly 3D printed. The microphase‐separated structures and physical properties of SIBS/PPO blends are systematically tuned by controlling blending ratios and molecular weights. Suitable composition ranges and desirable properties of SIBS/PPO blends for 3D printing are optimized. The morphology and properties of SIBS/PPO blends are characterized by an ensemble of techniques, including atomic force microscopy, small‐angle X‐ray scattering, and thermal and mechanical properties testing. The elucidation of processing‐structure‐property relationship of SIBS/PPO blends is essential for 3D printing and advanced manufacturing of high‐performance polymer systems.
more »
« less
- Award ID(s):
- 2017845
- PAR ID:
- 10390325
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 44
- Issue:
- 1
- ISSN:
- 1022-1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermoplastic elastomers based on ABA triblock copolymers are typically limited in modulus and strength due to crack propagation within the brittle regions when the hard end-block composition favors morphologies that exhibit connected domains. Increasing the threshold end-block composition to achieve enhanced mechanical performance is possible by increasing the number of junctions or bridging points per chain, but these copolymer characteristics also tend to increase the complexity of the synthesis. Here, we report an in situ polymerization method to successfully increase the number of effective junctions per chain through grafting of poly(styrene) (PS) to a commercial thermoplastic elastomer, poly(styrene)–poly(butadiene)–poly(styrene) (SBS). The strategy described here transforms a linear SBS triblock copolymer–styrene mixture into a linear-comb-linear architecture in which poly(styrene) (PS) grafts from the mid-poly(butadiene) (PBD) block during the polymerization of styrene. Through systematic variation in the initial SBS/styrene content, nanostructural transitions from disordered spheres to lamellar through reaction-induced phase transitions (RIPT) were identified as the styrene content increased. Surprisingly, maximum mechanical performance (Young's modulus, tensile strength, and elongation at break) was obtained with samples exhibiting lamellar nanostructures, corresponding to overall PS contents of 61–77 wt% PS (including the original PS in SBS). The PS grafting from the PBD block increases the modulus and the strength of the thermoplastic elastomer while preventing brittle fracture due to the greater number of junctions afforded by the PS grafts. The work presented here demonstrates the use of RIPT to transform standard SBS materials into polymer systems with enhanced mechanical properties.more » « less
-
Santagata, Antonio (Ed.)In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content. The elastomer and specific mass percentages were chosen based on prior successes involving acrylonitrile butadiene styrene (ABS), in which the maleic anhydride graft enabled compatibility between different materials. The rheological properties of PET and the PET/SEBS blends were characterized by the melt flow index and dynamic mechanical analysis. The addition of SEBS-g-MA did not have a significant impact on mechanical properties, as determined by tensile and impact testing, where all test specimens were manufactured by FFF. Delamination of the tensile specimens convoluted the ability to discern differences in the mechanical properties, particularly % elongation. Annealing of the specimens enabled the observation of the effect of elastomer content on the mechanical properties, particularly in the case of impact testing, where the impact strength increased with the increase in SEBS content. However, annealing led to shrinkage of the specimens, detracting from the realized benefits of the thermal process. Scanning electron microscopy of spent tensile specimens revealed that, in the non-annealed condition, SEBS formed nodules that would detach from the PET matrix during the tensile test, indicating that a robust bond was not present. The addition of SEBS-g-MA did allow for shape memory property characterization, where deformation of tensile specimens occurred at room temperature. Specimens from the 20% by mass elastomer content sample group exhibited a shape fixation ratio on the order of 99% and a shape recovery ratio on the order of 80%. This work demonstrates a potential waste reduction strategy to tackle the problem of polymer waste by upcycling discarded plastic into a feedstock material for additive manufacturing with shape memory properties.more » « less
-
The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to “dial-in” the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) mid-block. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions with the domain spacing between spheres increasing and decreasing along and traverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol% SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the two-dimensional SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafts of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical crosslinking that leads to nanostructured domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer.more » « less
An official website of the United States government
