skip to main content


Title: FedADMM: A federated primal-dual algorithm allowing partial participation
Federated learning is a framework for distributed optimization that places emphasis on communication efficiency. In particular, it follows a client-server broadcast model and is appealing because of its ability to accommodate heterogene- ity in client compute and storage resources, non-i.i.d. data assumptions, and data privacy. Our contribution is to offer a new federated learning algorithm, FedADMM, for solving non-convex composite optimization problems with non-smooth regularizers. We prove the convergence of FedADMM for the case when not all clients are able to participate in a given communication round under a very general sampling model.  more » « less
Award ID(s):
2144634
NSF-PAR ID:
10390334
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE 61st Conference on Decision and Control (CDC)
Page Range / eLocation ID:
287-294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Image reconstruction is the process of recovering an image from raw, under-sampled signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruction using a limited number of measurements, but these methods typically rely on the existence of a large, centralized database of fully sampled scans for training. In this work, we investigate federated learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of training global models across multiple clients (data sites), while keeping individual scans local. We empirically identify a low-data regime across a large number of heterogeneous scans, where a small number of training samples per client are available and non-collaborative models lead to performance drops. In this regime, we investigate the performance of adaptive federated optimization algorithms as a function of client data distribution and communication budget. Experimental results show that adaptive optimization algorithms are well suited for the federated learning of unrolled models, even in a limited-data regime (50 slices per data site), and that client-sided personalization can improve reconstruction quality for clients that did not participate in training. 
    more » « less
  2. Federated learning is a distributed optimization paradigm that enables a large number of resource-limited client nodes to cooperatively train a model without data sharing. Previous works analyzed the convergence of federated learning by accounting for data heterogeneity, communication/computation limitations, and partial client participation. However, most assume unbiased client participation, where clients are selected such that the aggregated model update is unbiased. In our work, we present the convergence analysis of federated learning with biased client selection and quantify how the bias affects convergence speed. We show that biasing client selection towards clients with higher local loss yields faster error convergence. From this insight, we propose Power-of-Choice, a communication- and computation-efficient client selection framework that flexibly spans the trade-off between convergence speed and solution bias. Extensive experiments demonstrate that Power-of-Choice can converge up to 3 times faster and give 10% higher test accuracy than the baseline random selection. 
    more » « less
  3. Mass data generation occurring in the Internet- of-Things (IoT) requires processing to extract meaningful in- formation. Deep learning is commonly used to perform such processing. However, due to the sensitive nature of these data, it is important to consider data privacy. As such, federated learning (FL) has been proposed to address this issue. FL pushes training to the client devices and tasks a central server with aggregating collected model weights to update a global model. However, the transmission of these model weights can be costly, gradually. The trade-off between communicating model weights for aggregation and the loss provided by the global model remains an open problem. In this work, we cast this trade-off problem of client selection in FL as an optimization problem. We then design a Distributed Client Selection (DCS) algorithm that allows client devices to decide to participate in aggregation in hopes of minimizing overall communication cost — while maintaining low loss. We evaluate the performance of our proposed client selection algorithm against standard FL and a state-of-the-art client selection algorithm, called Power-of-Choice (PoC), using CIFAR-10, FMNIST, and MNIST datasets. Our experimental results confirm that our DCS algorithm is able to closely match the loss provided by the standard FL and PoC, while on average reducing the overall communication cost by nearly 32.67% and 44.71% in comparison to standard FL and PoC, respectively. 
    more » « less
  4. Data-heterogeneous federated learning (FL) systems suffer from two significant sources of convergence error: 1) client drift error caused by performing multiple local optimization steps at clients, and 2) partial client participation error caused by the fact that only a small subset of the edge clients participate in every training round. We find that among these, only the former has received significant attention in the literature. To remedy this, we propose FedVARP, a novel variance reduction algorithm applied at the server that eliminates error due to partial client participation. To do so, the server simply maintains in memory the most recent update for each client and uses these as surrogate updates for the non-participating clients in every round. Further, to alleviate the memory requirement at the server, we propose a novel clustering-based variance reduction algorithm ClusterFedVARP. Unlike previously proposed methods, both FedVARP and ClusterFedVARP do not require additional computation at clients or communication of additional optimization parameters. Through extensive experiments, we show that FedVARP outperforms state-of-the-art methods, and ClusterFedVARP achieves performance comparable to FedVARP with much less memory requirements. 
    more » « less
  5. Traditionally, clustered federated learning groups clients with the same data distribution into a cluster, so that every client is uniquely associated with one data distribution and helps train a model for this distribution. We relax this hard association assumption to soft clustered federated learning, which allows every local dataset to follow a mixture of multiple source distributions. We propose FedSoft, which trains both locally personalized models and high-quality cluster models in this setting. FedSoft limits client workload by using proximal updates to require the completion of only one optimization task from a subset of clients in every communication round. We show, analytically and empirically, that FedSoft effectively exploits similarities between the source distributions to learn personalized and cluster models that perform well. 
    more » « less