ABSTRACT Shocks waves are a ubiquitous feature of many astrophysical plasma systems, and an important process for energy dissipation and transfer. The physics of these shock waves are frequently treated/modelled as a collisional, fluid magnetohydrodynamic (MHD) discontinuity, despite the fact that many shocks occur in the collisionless regime. In light of this, using fully kinetic, 3D simulations of non-relativistic, parallel propagating collisionless shocks comprised of electron-positron plasma, we detail the deviation of collisionless shocks form MHD predictions for varying magnetization/Alfvénic Mach numbers, with particular focus on systems with Alfénic Mach numbers much smaller than sonic Mach numbers. We show that the shock compression ratio decreases for sufficiently large upstream magnetic fields, in agreement with theoretical predictions from previous works. Additionally, we examine the role of magnetic field strength on the shock front width. This work reinforces a growing body of work that suggest that modelling many astrophysical systems with only a fluid plasma description omits potentially important physics.
more »
« less
Shockwaves in Jammed Ductile Granular Media
Abstract We investigate shock propagation in confined, frictionless granular media using discrete element simulations with an elastoplastic contact law. Depending on the level of confinement and loading, elastoplastic systems exhibit a weak or strong shock propagation response similar to an elastic Hertzian system although the details of the shock development differ markedly from the elastic case. Two modes of dynamic stress propagation are observed based on the shock intensity regime: weak shocks carry the stresses via the initial contact path while strong shocks form new contact networks behind the front. However, unlike for elastic shock propagation, there is an upper bound to the front velocity of strong shocks that depends on the maximum intergranular contact stiffness. Since elastoplastic contact is a dissipative process, results show that dissipation is enhanced with confining pressure in the weak shock regime.
more »
« less
- Award ID(s):
- 1761243
- PAR ID:
- 10390346
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 89
- Issue:
- 5
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In shockwave theory, the density, velocity and pressure jumps are derived from the conservation equations. Here, we address the physics of a weak shock the other way around. We first show that the density profile of a weak shockwave in a fluid can be expressed as a sum of linear acoustic modes. The shock so built propagates at the speed of sound and matter is exactly conserved at the front crossing. Yet, momentum and energy are only conserved up to order 0 in powers of the shock amplitude. The density, velocity and pressure jumps are similar to those of a fluid shock, and an equivalent Mach number can be defined. A similar process is possible in magnetohydrodynamics. Yet, such a decomposition is found impossible for collisionless shocks due to the dispersive nature of ion acoustic waves. Weakly nonlinear corrections to their frequency do not solve the problem. Weak collisionless shocks could be inherently nonlinear, non-amenable to any linear superposition. Or they could be non-existent, as hinted by recent works.more » « less
-
Shock–bubble interactions (SBIs) are important across a wide range of physical systems. In inertial confinement fusion, interactions between laser-driven shocks and micro-voids in both ablators and foam targets generate instabilities that are a major obstacle in achieving ignition. Experiments imaging the collapse of such voids at high energy densities (HED) are constrained by spatial and temporal resolution, making simulations a vital tool in understanding these systems. In this study, we benchmark several radiation and thermal transport models in the xRAGE hydrodynamic code against experimental images of a collapsing mesoscale void during the passage of a 300 GPa shock. We also quantitatively examine the role of transport physics in the evolution of the SBI. This allows us to understand the dynamics of the interaction at timescales shorter than experimental imaging framerates. We find that all radiation models examined reproduce empirical shock velocities within experimental error. Radiation transport is found to reduce shock pressures by providing an additional energy pathway in the ablation region, but this effect is small (∼1% of total shock pressure). Employing a flux-limited Spitzer model for heat conduction, we find that flux limiters between 0.03 and 0.10 produce agreement with experimental velocities, suggesting that the system is well-within the Spitzer regime. Higher heat conduction is found to lower temperatures in the ablated plasma and to prevent secondary shocks at the ablation front, resulting in weaker primary shocks. Finally, we confirm that the SBI-driven instabilities observed in the HED regime are baroclinically driven, as in the low energy case.more » « less
-
Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case.more » « less
-
Collisionless shocks efficiently convert the energy of the directed ion flow into their thermal energy. Ion distributions change drastically at the magnetized shock crossing. Even in the absence of collisions, ion dynamics within the shock front is non-integrable and gyrophase dependent. The downstream distributions just behind the shock are not gyrotropic but become so quickly due to the kinematic gyrophase mixing even in laminar shocks. During the gyrotropization all information about gyrophases is lost. Here we develop a mapping of upstream and downstream gyrotropic distributions in terms of scattering probabilities at the shock front. An analytical expression for the probability is derived for directly transmitted ions in the narrow shock approximation. The dependence of the probability on the magnetic compression and the cross-shock potential is demonstrated.more » « less
An official website of the United States government

