skip to main content


Title: The Kuramoto–Lohe model and collective absorption of a photon
Light absorption by molecular exciton states in disordered networks is studied. The main purpose of this paper is to look at how phases of the intermediate ground–excited state superposition interfere during the absorption process. How does this phase average enable, or suppress, absorption to a delocalized state? To address this question, a theory for phase oscillators is used to predict the purity of the collective excited state of the network. The results of the study suggest that collective absorption by molecular exciton states requires a sufficiently large electronic coupling between molecules in the network compared to the random distribution of transition energies at the sites, even when the molecular network is completely isolated from the environment degrees of freedom. The ‘dividing line’ between absorption to a mixture of, essentially, localized excited states and coherent excitation of a pure delocalized exciton state is suggested to be predicted by the threshold of phase synchronization.  more » « less
Award ID(s):
2211326
NSF-PAR ID:
10390357
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
478
Issue:
2265
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton–vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton–vibration interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these features through dephasing. 
    more » « less
  2. In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given the recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir. 
    more » « less
  3. Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS2 exciton leads to hole transfer from the MoS2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.

     
    more » « less
  4. Organic Polymer-based photovoltaic systems offer a viable alternative to more standard solid-state devices for light-harvesting applications. In this study, we investigate the electronic dynamics of a model organic photovoltaic (OPV) heterojunction consisting of polyphenylene vinylene (PPV) oligomers and a [ 6,6 ] -phenyl C61-butyric acid methyl ester (PCBM) blend. Our approach treats the classical molecular dynamics of the atoms within an Ehrenfest mean-field treatment of the π - π ⁎ singly excited states spanning a subset of donor and acceptor molecules near the phase boundary of the blend. Our results indicate that interfacial electronic states are modulated by C=C bond stretching motions and that such motions induce avoided crossings between nearby excited states thereby facilitating transitions from localized excitonic configurations to delocalized charge-separated configurations on an ultrafast time-scale. The lowest few excited states of the model interface rapidly mix allowing low frequency C-C out-of-plane torsions to modulate the potential energy surface such that the system can sample both intermolecular charge-transfer and charge-separated electronic configurations on sub-100 fs time scales. Our simulations support an emerging picture of carrier generation in OPV systems in which interfacial electronic states can rapidly decay into charge-separated and current producing states via coupling to vibronic degrees of freedom. 
    more » « less
  5. X-ray absorption spectroscopy (XAS) is a powerful experimental technique to probe the local order in materials with core electron excitations. Experimental interpretation requires supporting theoretical calculations. For water, these calculations are very demanding and, to date, could only be done with major approximations that limited the accuracy of the calculated spectra. This prompted an intense debate on whether a substantial revision of the standard picture of tetrahedrally bonded water was necessary to improve the agreement of theory and experiment. Here, we report a first-principles calculation of the XAS of water that avoids the approximations of prior work, thanks to recent advances in electron excitation theory. The calculated XAS spectra, and their variation with changes of temperature and/or with isotope substitution, are in good quantitative agreement with experiments. The approach requires accurate quasiparticle wave functions beyond density functional theory approximations, accounts for the dynamics of quasiparticles, and includes dynamic screening as well as renormalization effects due to the continuum of valence-level excitations. The three features observed in the experimental spectra are unambiguously attributed to excitonic effects. The preedge feature is associated with a bound intramolecular exciton, the main-edge feature is associated with an exciton localized within the coordination shell of the excited molecule, and the postedge feature is delocalized over more distant neighbors, as expected for a resonant state. The three features probe the local order at short, intermediate, and longer range relative to the excited molecule. The calculated spectra are fully consistent with a standard tetrahedral picture of water. 
    more » « less