It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule’s excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.
more »
« less
The Kuramoto–Lohe model and collective absorption of a photon
Light absorption by molecular exciton states in disordered networks is studied. The main purpose of this paper is to look at how phases of the intermediate ground–excited state superposition interfere during the absorption process. How does this phase average enable, or suppress, absorption to a delocalized state? To address this question, a theory for phase oscillators is used to predict the purity of the collective excited state of the network. The results of the study suggest that collective absorption by molecular exciton states requires a sufficiently large electronic coupling between molecules in the network compared to the random distribution of transition energies at the sites, even when the molecular network is completely isolated from the environment degrees of freedom. The ‘dividing line’ between absorption to a mixture of, essentially, localized excited states and coherent excitation of a pure delocalized exciton state is suggested to be predicted by the threshold of phase synchronization.
more »
« less
- Award ID(s):
- 2211326
- PAR ID:
- 10390357
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 478
- Issue:
- 2265
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the landscape of molecular photocatalysis is vital to enable efficient conversion of feedstock molecules to targeted products and inhibit off-cycle reactivity. In this study, the light-promoted reactivity of [RuCp*2]+ was explored via electronic structure, photophysical, and photostability studies and the reactivity of [RuCp*2]+ within a photocatalytic hydrogen evolution cycle was assessed. TD-DFT calculations support the assignment of a low-energy ligand-to-metal charge transfer transition (LMCT) centered at 500 nm, where an electron from a ligand-based orbital delocalized across both Cp* ligands is promoted to a dx2–y2-based β-LUMO orbital. Upon irradiating the LMCT absorption feature, ultrafast transient absorption spectroscopy measurements show that an initial excited state (τ1 = 1.3 ± 0.1 ps) is populated, which undergoes fast relaxation to a longer-lived state (τ2 = 12.0 ± 0.9 ps), either via internal conversion or vibrational relaxation. Despite the short-lived nature of these excited states, bulk photolysis of [RuCp*2]+ demonstrates that photochemical conversion to decomposition products is possible upon prolonged illumination. Collectively, these studies reveal that [RuCp*2]+ undergoes light-driven decomposition, highlighting the necessity to construct molecular photocatalytic systems resistant to off-cycle reactivity in both the ground and excited states.more » « less
-
In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given the recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir.more » « less
-
null (Ed.)Intramolecular charge transfer and the associated changes in molecular structure in N,N′-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon–carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon–carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps.more » « less
-
null (Ed.)The electronic exciton polaron is a hypothetical many-body quasiparticle formed by an exciton dressed with a polarized electron-hole cloud in the Fermi sea (FS). It is predicted to display rich many-body physics and unusual roton-like dispersion. Exciton polarons were recently evoked to explain the excitonic spectra of doped monolayer transition metal dichalcogenides (TMDs), but these studies are limited to the ground state. Excited-state exciton polarons can exhibit richer many-body physics due to their larger spatial extent, but detection is challenging due to their inherently weak signals. Here we observe gate-tunable exciton polarons for the 1s - 3s excitonic Rydberg series in ultraclean monolayer MoSe2 devices by optical spectroscopy. When the FS expands, we observe increasingly severe suppression and steep energy shift from low to high Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Notably, the exciton-polaron absorption and emission bands are separated with an energy gap, which increases from ground to excited state. Such peculiar characteristics are attributed to the roton-like exciton-polaron dispersion, where energy minima occur at finite momenta. The roton effect increases from ground to excited state. Such exciton-polaron Rydberg series with progressively significant many-body and roton effect shall provide a new platform to explore complex many-body phenomena.more » « less
An official website of the United States government

