skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the Limitations of NEATM-like Models: A Case Study with Near-Earth Asteroid (285263) 1998 QE2
Abstract Near-Earth asteroids (NEAs) are a key test bed for investigations into planet formation, asteroid dynamics, and planetary defense initiatives. These studies rely on understanding NEA sizes, albedo distributions, and regolith properties. Simple thermal models are a commonly used method for determining these properties; however, they have inherent limitations owing to the simplifying assumptions they make about asteroid shapes and properties. With the recent collapse of the Arecibo Telescope and a decrease of direct size measurements, as well as future facilities such as LSST and NEO Surveyor coming online soon, these models will play an increasingly important role in our knowledge of the NEA population. Therefore, it is key to understand the limits of these models. In this work we constrain the limitations of simple thermal models by comparing model results to more complex thermophysical models, radar data, and other existing analyses. Furthermore, we present a method for placing tighter constraints on inferred NEA properties using simple thermal models. These comparisons and constraints are explored using the NEA (285263) 1998 QE2 as a case study. We analyze QE2 with a simple thermal model and data from both the NASA IRTF SpeX instrument and NEOWISE mission. We determine an albedo between 0.05 and 0.10 and thermal inertia between 0 and 425J m−2s−1/2K−1. We find that overall the simple thermal model is able to well constrain the properties of QE2; however, we find that model uncertainties can be influenced by topography, viewing geometry, and the wavelength range of data used.  more » « less
Award ID(s):
1856411
PAR ID:
10390613
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
4
Issue:
1
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 5
Size(s):
Article No. 5
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Asteroid diameters are traditionally difficult to estimate. When a direct measurement of the diameter cannot be made through either occultation or direct radar observations, the most common method is to approximate the diameter from infrared observations. Once the diameter is known, a comparison with visible light observations can be used to find the visible geometric albedo of the body. One of the largest data sets of asteroid albedos comes from the NEOWISE mission, which measured asteroid albedos both in the visible and infrared. We model these albedos as a function of proper orbital elements available from the Asteroid Families Portal using an ensemble of neural networks. We find that both the visible and infrared geometric albedos are significantly correlated with asteroid position in the belt and occur in both asteroid families and in the background belt. We find that the ensemble’s prediction reduces the average error in the albedo by about 37% compared to a model that simply adopts an average albedo with no regard for the dynamical state of the body. We then use this model to predict albedos for the half million main belt asteroids with proper orbital elements available in the Asteroid Families Portal and provide the results in a catalog. Finally, we show that several presently categorized asteroid families exist within much larger groups of asteroids of similar albedos—this may suggest that further improvements in family identification can be made. 
    more » « less
  2. Abstract It is important to test the possible existence of fifth forces, as ultralight bosons that would mediate these are predicted to exist in several well-motivated extensions of the Standard Model. Recent work indicated asteroids as promising probes, but applications to real data are lacking so far. Here we use the OSIRIS-REx mission and ground-based tracking data for the asteroid Bennu to derive constraints on fifth forces. Our limits are strongest for mediator massesm ~ (10−18-10−17) eV, where we currently achieve the tightest bounds. These can be translated to a wide class of models leading to Yukawa-type fifth forces, and we demonstrate how they apply toU(1)Bdark photons and baryon-coupled scalars. Our results demonstrate the potential of asteroid tracking in probing well-motivated extensions of the Standard Model and ultralight bosons near the fuzzy dark matter range. 
    more » « less
  3. Abstract We use the known surface boulder-size distribution of the C-type rubble pile asteroid Ryugu (NEA 162173) to determine its macroporosity, assuming it is a homogeneous granular aggregate. We show that the volume-frequency distribution of its boulders, cobbles, and pebbles, is well-represented by a lognormal function withσ= 2.4 ± 0.1 andμ= 0.2 ± 0.05. Application of linear-mixture packing theory yields a value for the macroporosity ofϕ= 0.14 ± 0.04. Given its low bulk density of 1.19 gm cm−3, this implies an average density for Ryugu’s rocks of 1.38 ± 0.07 gm cm−3throughout its volume, consistent with a recent determination for surface boulders based on their thermal properties. This supports the spectrum-based argument that interplanetary dust particles may be the best analog material available on Earth, and it suggests that high-density, well-lithified objects such as chondrules and chondrule-bearing chondrites may be rare on Ryugu. Implications of this result for the origin of chondrules, a long-standing problem in cosmochemistry, are discussed. We propose that chondrules and most chondrites formed together in rare lithification events, which occurred during the accretion of chondritic envelopes to large, differentiated planetesimals at a time when they were still hot from26Al decay. 
    more » « less
  4. Abstract We present the first measurements of asteroids in millimeter wavelength data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two ∼270 deg2sky regions near the ecliptic plane, each observed with the SPTpol camera ∼100 times over 1 month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids—(324) Bamberga, (13) Egeria, and (22) Kalliope—with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with an S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids’ effective emissivities, brightness temperatures, and light-curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of 0.64 ± 0.11 at 2.0 and < 0.47 at 3.2 mm. We predict the asteroids detectable in other SPT data sets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which has ∼10× the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future data sets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population. 
    more » « less
  5. Abstract We derive purely gravitational constraints on dark matter and cosmic neutrino profiles in the solar system using asteroid (101955) Bennu. We focus on Bennu because of its extensive tracking data and high-fidelity trajectory modeling resulting from the OSIRIS-REx mission. We find that the local density of dark matter is bound byρDM ≲ 3.3 × 10-15 kg/m3 ≃ 6 × 106 ρ̅DM, in the vicinity of ∼ 1.1 au (where ρ̅DM ≃ 0.3 GeV/cm3). We show that high-precision tracking data of solar system objects can constrain cosmic neutrino overdensities relative to the Standard Model prediction n̅ν, at the level ofη ≡ nν/n̅ν ≲ 1.7 × 1011(0.1 eV/mν) (Saturn), comparable to the existing bounds from KATRIN and other previous laboratory experiments (withmνthe neutrino mass). These local bounds have interesting implications for existing and future direct-detection experiments. Our constraints apply to all dark matter candidates but are particularly meaningful for scenarios including solar halos, stellar basins, and axion miniclusters, which predict overdensities in the solar system. Furthermore, introducing a DM-SM long-range fifth force with a strength α̃Dtimes stronger than gravity, Bennu can set a constraint onρDM ≲ ρ̅DM(6 × 106/α̃D). These constraints can be improved in the future as the accuracy of tracking data improves, observational arcs increase, and more missions visit asteroids. 
    more » « less