Abstract Outdoor air pollution, particularly volatile organic compounds (VOCs), significantly contributes to the global health burden. Previous analyses of VOC exposure have typically focused on regional and national scales, thereby limiting global health burden assessments. In this study, we utilized a global chemistry-climate model to simulate VOC distributions and estimate related cancer risks from 2000 to 2019. Our findings indicated a 10.2% rise in global VOC emissions during this period, with substantial increases in Sub-Saharan Africa, the Rest of Asia, and China, but decreases in the U.S. and Europe due to reductions in the transportation and residential sectors. Carcinogenic VOCs such as benzene, formaldehyde, and acetaldehyde contributed to a lifetime cancer burden affecting 0.60 [95% confidence interval (95CI): 0.40–0.81] to 0.85 [95CI: 0.56–1.14] million individuals globally. We projected that between 36.4% and 39.7% of the global population was exposed to harmful VOC levels, with the highest exposure rates found in China (82.8–84.3%) and considerably lower exposure in Europe (1.7–5.8%). Open agricultural burning in less-developed regions amplified VOC-induced cancer burdens. Significant disparities in cancer burdens between high-income and low-to-middle-income countries were identified throughout the study period, primarily due to unequal population growth and VOC emissions. These findings underscore health disparities among different income nations and emphasize the persistent need to address the environmental injustice related to air pollution exposure.
more »
« less
Emission Characteristics and Health Risks of Volatile Organic Compounds (VOCs) Measured in a Typical Recycled Rubber Plant in China
The continued development of the automotive industry has led to a rapid increase in the amount of waste rubber tires, the problem of “black pollution” has become more serious but is often ignored. In this study, the emission characteristics, health risks, and environmental effects of volatile organic compounds (VOCs) from a typical, recycled rubber plant were studied. A total of 15 samples were collected by summa canisters, and 100 VOC species were detected by the GC/MS-FID system. In this study, the total VOCs (TVOCs) concentration ranged from 1000 ± 99 to 19,700 ± 19,000 µg/m3, aromatics and alkanes were the predominant components, and m/p-xylene (14.63 ± 4.07%–48.87 ± 3.20%) could be possibly regarded as a VOCs emission marker. We also found that specific similarities and differences in VOCs emission characteristics in each process were affected by raw materials, production conditions, and process equipment. The assessment of health risks showed that devulcanizing and cooling had both non-carcinogenic and carcinogenic risks, yarding had carcinogenic risks, and open training and refining had potential carcinogenic risks. Moreover, m/p-xylene and benzene were the main non-carcinogenic species, while benzene, ethylbenzene, and carbon tetrachloride were the dominant risk compounds. In the evaluation results of LOH, m/p-xylene (25.26–67.87%) was identified as the most key individual species and should be prioritized for control. In conclusion, the research results will provide the necessary reference to standardize the measurement method of the VOCs source component spectrum and build a localized source component spectrum.
more »
« less
- Award ID(s):
- 1743401
- PAR ID:
- 10390643
- Date Published:
- Journal Name:
- International Journal of Environmental Research and Public Health
- Volume:
- 19
- Issue:
- 14
- ISSN:
- 1660-4601
- Page Range / eLocation ID:
- 8753
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Building insulation materials can affect indoor air by (i) releasing primary volatile organic compounds (VOCs) from building enclosure cavities to the interior space, (ii) mitigating exposure to outdoor pollutants through reactive deposition (of oxidants, e.g. , ozone) or filtration (of particles) in infiltration air, and (iii) generating secondary VOCs and other gas-phase byproducts resulting from oxidant reactions. This study reports primary VOC emission fluxes, ozone (O 3 ) reaction probabilities ( γ ), and O 3 reaction byproduct yields for eight common, commercially available insulation materials. Fluxes of primary VOCs from the materials, measured in a continuous flow reactor using proton transfer reaction-time of flight-mass spectrometry, ranged from 3 (polystyrene with thermal backing) to 61 (cellulose) μmol m −2 h −1 (with total VOC mass emission rates estimated to be between ∼0.3 and ∼3.3 mg m −2 h −1 ). Major primary VOC fluxes from cellulose were tentatively identified as compounds likely associated with cellulose chemical and thermal decomposition products. Ozone-material γ ranged from ∼1 × 10 −6 to ∼30 × 10 −6 . Polystyrene with thermal backing and polyisocyanurate had the lowest γ , while cellulose and fiberglass had the highest. In the presence of O 3 , total observed volatile byproduct yields ranged from 0.25 (polystyrene) to 0.85 (recycled denim) moles of VOCs produced per mole of O 3 consumed, or equivalent to secondary fluxes that range from 0.71 (polystyrene) to 10 (recycled denim) μmol m −2 h −1 . Major emitted products in the presence of O 3 were generally different from primary emissions and were characterized by yields of aldehydes and acetone. This work provides new data that can be used to evaluate and eventually model the impact of “hidden” materials ( i.e. , those present inside wall cavities) on indoor air quality. The data may also guide building enclosure material selection, especially for buildings in areas of high outdoor O 3 .more » « less
-
The increasing prevalence of hazardous chemical incidents in the United States necessitates the implementation of analytically robust, rapid, and reliable screening techniques for toxicant mixture analysis to understand short- and long-term health impacts of environmental exposures. A recent chemical disaster in East Palestine, Ohio has underscored the importance of thorough contamination assessment. On February 03, 2023, a Norfolk Southern train derailment prompted a chemical spill and fires. An open burn involving over 100,000 gal of vinyl chloride was conducted three days later. Hazardous compounds were released into air, water, and soil. To provide time-sensitive exposure data for emergency response, this study outlines a novel methodology for rapid characterization of chemical contamination of environmental media to support disaster response efforts. A controlled static headspace sampling system, in conjunction with a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), was developed to characterize volatile organic compounds (VOCs) in surface water samples collected near the East Palestine train derailment site. Spatial variations were observed in the chemical composition of surface water samples collected at different locations. Hydrocarbons were found to be the most abundant chemical group of all surface water samples, contributing 50 % to 97 % to the total headspace VOC mass. Compounds commonly detected in surface water samples, including benzene, styrene, xylene, and methyl tert-butyl ether (MTBE) were also observed in most surface water samples, with aqueous concentrations typically at ng/L levels. This study demonstrated the potential of the proposed methodology to be applied for rapid field screening of volatile chemicals in water samples in order to enable fast emergency response to chemical disasters and environmental hazards.more » « less
-
Abstract. OH reactivity (OHR) is an important control on the oxidative capacity in the atmosphere but remains poorly constrained in many environments, such asremote, rural, and urban atmospheres, as well as laboratory experiment setups under low-NO conditions. For an improved understanding of OHR, itsevolution during oxidation of volatile organic compounds (VOCs) is a major aspect requiring better quantification. We use the fully explicitGenerator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model to study the OHR evolution in the NO-free photooxidationof several VOCs, including decane (an alkane), m-xylene (an aromatic), and isoprene (an alkene). Oxidation progressively produces more saturated and functionalized species. Total organic OHR (including precursor and products, OHRVOC) first increases for decane (as functionalization increases OH rate coefficients) and m-xylene (as much more reactive oxygenated alkenes are formed). For isoprene, C=C bond consumption leads to a rapid drop in OHRVOC before significant production of the first main saturated multifunctional product, i.e., isoprene epoxydiol. The saturated multifunctional species in the oxidation of different precursors have similar average OHRVOC per C atom. The latter oxidation follows a similar course for different precursors, involving fragmentation of multifunctional species to eventual oxidation of C1 and C2 fragments to CO2, leading to a similar evolution of OHRVOC per C atom. An upper limit of the total OH consumption during complete oxidation to CO2 is roughly three per C atom. We also explore the trends in radical recycling ratios. We show that differences in the evolution of OHRVOC between the atmosphere and an environmental chamber, and between the atmosphere and an oxidation flow reactor (OFR), can be substantial, with the former being even larger, but these differences are often smaller than between precursors. The Teflon wall losses of oxygenated VOCs in chambers result in large deviations of OHRVOC from atmospheric conditions, especially for the oxidation of larger precursors, where multifunctional species may suffer substantial wall losses, resulting in significant underestimation of OHRVOC. For OFR, the deviations of OHRVOC evolution from the atmospheric case are mainly due to significant OHR contribution from RO2 and lack of efficient organic photolysis. The former can be avoided by lowering the UV lamp setting in OFR, while the latter is shown to be very difficult to avoid. However, the former may significantly offset the slowdown in fragmentation of multifunctional species due to lack of efficient organic photolysis.more » « less
-
Abstract We present emission measurements of volatile organic compounds (VOCs) for western U.S. wildland fires made on the NSF/NCAR C‐130 research aircraft during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign in summer 2018. VOCs were measured with complementary instruments onboard the C‐130, including a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and two gas chromatography (GC)‐based methods. Agreement within combined instrument uncertainties (<60%) was observed for most co‐measured VOCs. GC‐based measurements speciated the isomeric contributions to selected PTR‐ToF‐MS ion masses and generally showed little fire‐to‐fire variation. We report emission ratios (ERs) and emission factors (EFs) for 161 VOCs measured in 31 near‐fire smoke plume transects of 24 specific individual fires sampled in the afternoon when burning conditions are typically most active. Modified combustion efficiency (MCE) ranged from 0.85 to 0.94. The measured campaign‐average total VOC EF was 26.1 ± 6.9 g kg−1, approximately 67% of which is accounted for by oxygenated VOCs. The 10 most abundantly emitted species contributed more than half of the total measured VOC mass. We found that MCE alone explained nearly 70% of the observed variance for total measured VOC emissions (r2 = 0.67) and >50% for 57 individual VOC EFs representing more than half the organic carbon mass. Finally, we found little fire‐to‐fire variability for the mass fraction contributions of individual species to the total measured VOC emissions, suggesting that a single speciation profile can describe VOC emissions for the wildfires in coniferous ecosystems sampled during WE‐CAN.more » « less
An official website of the United States government

