Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange.
more »
« less
Emerging investigator series: primary emissions, ozone reactivity, and byproduct emissions from building insulation materials
Building insulation materials can affect indoor air by (i) releasing primary volatile organic compounds (VOCs) from building enclosure cavities to the interior space, (ii) mitigating exposure to outdoor pollutants through reactive deposition (of oxidants, e.g. , ozone) or filtration (of particles) in infiltration air, and (iii) generating secondary VOCs and other gas-phase byproducts resulting from oxidant reactions. This study reports primary VOC emission fluxes, ozone (O 3 ) reaction probabilities ( γ ), and O 3 reaction byproduct yields for eight common, commercially available insulation materials. Fluxes of primary VOCs from the materials, measured in a continuous flow reactor using proton transfer reaction-time of flight-mass spectrometry, ranged from 3 (polystyrene with thermal backing) to 61 (cellulose) μmol m −2 h −1 (with total VOC mass emission rates estimated to be between ∼0.3 and ∼3.3 mg m −2 h −1 ). Major primary VOC fluxes from cellulose were tentatively identified as compounds likely associated with cellulose chemical and thermal decomposition products. Ozone-material γ ranged from ∼1 × 10 −6 to ∼30 × 10 −6 . Polystyrene with thermal backing and polyisocyanurate had the lowest γ , while cellulose and fiberglass had the highest. In the presence of O 3 , total observed volatile byproduct yields ranged from 0.25 (polystyrene) to 0.85 (recycled denim) moles of VOCs produced per mole of O 3 consumed, or equivalent to secondary fluxes that range from 0.71 (polystyrene) to 10 (recycled denim) μmol m −2 h −1 . Major emitted products in the presence of O 3 were generally different from primary emissions and were characterized by yields of aldehydes and acetone. This work provides new data that can be used to evaluate and eventually model the impact of “hidden” materials ( i.e. , those present inside wall cavities) on indoor air quality. The data may also guide building enclosure material selection, especially for buildings in areas of high outdoor O 3 .
more »
« less
- PAR ID:
- 10134013
- Date Published:
- Journal Name:
- Environmental Science: Processes & Impacts
- Volume:
- 21
- Issue:
- 8
- ISSN:
- 2050-7887
- Page Range / eLocation ID:
- 1255 to 1267
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction.more » « less
-
Scented wax products, such as candles and wax warmers/melts, are popular fragranced consumer products that are commonly used in residential buildings. As scented wax products are intentionally fragranced to produce pleasant smellscapes for occupants, they may represent an important source of volatile organic compounds (VOCs) to indoor atmospheres. The aim of this study is to evaluate terpene emission factors (EFs) and inhalation intake fractions (iFs) for scented wax products to better understand their impact on indoor chemistry and chemical exposures. Full-scale emission experiments were conducted in the Purdue zEDGE Test House using a variety of scented candles (n = 5) and wax warmers/melts (n = 14) under different outdoor air exchange rates (AERs). Terpene concentrations were measured in real-time using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). PTR-TOF-MS measurements revealed that scented candle and wax warmer/melt products emit a variety of monoterpenes (C10H16) and oxygen-containing monoterpenoids (C10H14O, C10H16O, C10H18O, C10H20O), with peak concentrations in the range of 10^−1 to 10^2 ppb. Monoterpene EFs were much greater for scented wax warmers/melts (C10H16 EFs ~ 10^2 mg per g wax consumed) compared to scented candles (C10H16 EFs ~ 10^−1 to 100 mg per g wax consumed). Significant emissions of reactive terpenes from both products, along with nitrogen oxides (NO, NO2) from candles, depleted indoor ozone (O3) concentrations. Terpene iFs were similar between the two products (iFs ~ 10^3 ppm) and increased with decreasing outdoor AER. Terpene iFs during concentration decay periods were similar to, or greater than, iFs during active emission periods for outdoor AERs ≤ 3.0 h^−1. Overall, scented wax warmers/melts were found to release greater quantities of monoterpenes compared to other fragranced consumer products used in the home, including botanical disinfectants, hair care products, air fresheners, and scented sprays.more » « less
-
The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured in this study using a Vocus‐2R proton‐transfer reaction time‐of‐flight mass spectrometer in Pasadena, California, downwind of Los Angeles, in summer 2022. Relative to 2010, ambient concentrations of aromatic hydrocarbons have declined at a similar rate as carbon monoxide, suggesting reduced overall emissions from mobile sources. However, the ambient concentrations of oxygenated VOCs have remained similar or increased, suggesting a greater relative importance of oxidation products and other emission sources, such as volatile chemical products whose emissions are largely unregulated. Relative to 2010, the range of measured VOCs was expanded, including higher aromatics and additional volatile chemical products, allowing a better understanding of a wider range of emission sources. Emission ratios relative to carbon monoxide were estimated and compared with 2010 emission ratios. Average measured ozone concentrations were generally comparable between 2022 and 2010; however, at the same temperature, daytime ozone concentrations were lower in 2022 than 2010. Faster photochemistry was observed in 2022, with average hydroxyl radical exposure being ∼68% higher during midday (statistically significant at 95% confidence), although this difference reduces to ∼35% when comparing observations at ambient temperatures of 25–30°C only. Future trends in temperature are important in predicting ozone production.more » « less
-
Abstract Ambient ozone (O3) concentrations in Southeast Michigan (SEMI) can exceed the U.S. National Ambient Air Quality Standard. Despite past efforts to measure O3precursors and elucidate reaction mechanisms, changing emission patterns and atmospheric composition in SEMI warrant new measurements and updated mechanisms to understand the causes of observed O3exceedances. In this study, we examine the chemical drivers of O3exceedances in SEMI, based on the Phase I MOOSE (Michigan‐Ontario Ozone Source Experiment) field study performed during May to June 2021. A zero‐dimensional (0‐D) box model is constrained with measurement data of meteorology and trace gas concentrations. Box model sensitivity simulations suggest that the formaldehyde to nitrogen dioxide ratio (HCHO/NO2) for the transition between the volatile organic compounds (VOCs)‐ and nitrogen oxides (NOx)‐limited O3production regimes is 3.0 ± 0.3 in SEMI. The midday (12:00–16:00) averaged HCHO/NO2ratio during the MOOSE Phase I study is 1.62 ± 1.03, suggesting that O3production in SEMI is limited by VOC emissions. This finding implies that imposing stricter regulations on VOC emissions should be prioritized for the SEMI O3nonattainment area. This study, through its use of ground‐based HCHO/NO2ratios and box modeling to assess O3‐VOC‐NOxsensitivities, has significant implications for air quality policy and the design of effective O3pollution control strategies, especially in O3nonattainment areas.more » « less
An official website of the United States government

