skip to main content


Title: Long-term transverse imaging of the hippocampus with glass microperiscopes
The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry.  more » « less
Award ID(s):
1934288 1707287
NSF-PAR ID:
10390685
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.

     
    more » « less
  2. Abstract

    Gene and protein expressions are key determinants of cellular function. Neurons are the building blocks of brain circuits, yet the relationship between their molecular identity and the spatial distribution of their dendritic inputs and axonal outputs remains incompletely understood. The open‐source knowledge baseHippocampome.orgamasses such transcriptomic data from the scientific literature for morphologically defined neuron types in the rodent hippocampal formation: dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. Positive, negative, or mixed expression reports were initially obtained from published articles directly connecting molecular evidence to neurons with known axonal and dendritic patterns across hippocampal layers. Here, we supplement this information by collating, formalizing, and leveraging relational expression inferences that link a gene or protein expression or lack thereof to that of another molecule or to an anatomical location. With these additional interpretations, we freely release online a comprehensive human‐ and machine‐readable molecular profile for more than 100 neuron types inHippocampome.org. Analysis of these data ascertains the ability to distinguish unequivocally most neuron types in each of the major subdivisions of the hippocampus based on currently known biochemical markers. Moreover, grouping neuron types by expression similarity reveals eight superfamilies characterized by a few defining molecules.

     
    more » « less
  3. Abstract Introduction

    Hippocampal sclerosis of aging (HS) is a common pathology often misdiagnosed as Alzheimer's disease. We tested the hypothesis that participants with HS would have a magnetic resonance imaging (MRI)‐detectable hippocampal pattern of atrophy distinct from participants without HS, both with and without Alzheimer's disease neuropathology (ADNP).

    Methods

    Query of the National Alzheimer's Coordinating Center database identified 198 participants with MRI and autopsy. Hippocampal subfields were segmented with FreeSurfer v6. Analysis of covariance for subfield volumes compared HS+ participants to those without HS, both with ADNP (HS–/ADNP+) and without (HS–/ADNP–).

    Results

    HS+ participants (N = 27, 14%) showed atrophied cornu ammonis 1 (CA1; leftP < .001, ηp= 0.14; rightP = .001, ηp= 0.09) and subiculum (leftP < .001, ηp= 0.139; rightP = .001, ηp= 0.085) compared to HS–/ADNP+ (N = 100, 51%). Compared to HS–/ADNP– (N = 71, 36%), HS+ also had atrophy in subiculum (leftP < .001, ηp= 0.235; rightP = .002, ηp= 0.137) and CA1 (leftP < .001, ηp= 0.137; rightP = .006, ηp= 0.070).

    Discussion

    Subiculum and CA1 atrophy from clinical MRI may be a promising in vivo biomarker for HS.

     
    more » « less
  4. Abstract

    Hippocampal place cells contribute to mammalian spatial navigation and memory formation. Numerous models have been proposed to explain the location-specific firing of this cognitive representation, but the pattern of excitatory synaptic input leading to place firing is unknown, leaving no synaptic-scale explanation of place coding. Here we used resonant scanning two-photon microscopy to establish the pattern of synaptic glutamate input received by CA1 place cells in behaving mice. During traversals of the somatic place field, we found increased excitatory dendritic input, mainly arising from inputs with spatial tuning overlapping the somatic field, and functional clustering of this input along the dendrites over ~10 µm. These results implicate increases in total excitatory input and co-activation of anatomically clustered synaptic input in place firing. Since they largely inherit their fields from upstream synaptic partners with similar fields, many CA1 place cells appear to be part of multi-brain-region cell assemblies forming representations of specific locations.

     
    more » « less
  5. Abstract

    The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.

     
    more » « less