skip to main content


Title: Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis
The incorporation of new information into the hippocampal network is likely to be constrained by its innate architecture and internally generated activity patterns. However, the origin, organization and consequences of such patterns remain poorly understood. In the present study we show that hippocampal network dynamics are affected by sequential neurogenesis. We birthdated CA1 pyramidal neurons with in utero electroporation over 4 embryonic days, encompassing the peak of hippocampal neurogenesis, and compared their functional features in freely moving adult mice. Neurons of the same birthdate displayed distinct connectivity, coactivity across brain states and assembly dynamics. Same-birthdate neurons exhibited overlapping spatial representations, which were maintained across different environments. Overall, the wiring and functional features of CA1 pyramidal neurons reflected a combination of birthdate and the rate of neurogenesis. These observations demonstrate that sequential neurogenesis during embryonic development shapes the preconfigured forms of adult network dynamics.  more » « less
Award ID(s):
1707316
NSF-PAR ID:
10353311
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Neuroscience
ISSN:
1097-6256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.

     
    more » « less
  2. The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry. 
    more » « less
  3. Key points

    Triheteromeric NMDA receptors contain two GluN1 and two distinct GluN2 subunits and mediate excitatory neurotransmission in the CNS.

    Triheteromeric GluN1/2B/2D receptors have functional properties intermediate to those of diheteromeric GluN1/2B and GluN1/2D receptors.

    GluN1/2B/2D receptors are more sensitive to channel blockade by ketamine and memantine compared to GluN1/2B receptors in the presence of physiological Mg2+.

    GluN2B‐selective antagonists produce robust inhibition of GluN1/2B/2D receptors, and the GluN2B‐selective positive allosteric modulator spermine enhances responses from GluN1/2B/2D but not GluN1/2A/2B receptors.

    These insights into the properties of triheteromeric GluN1/2B/2D receptors are necessary to appreciate their physiological roles in neural circuit function and the actions of therapeutic agents targeting NMDA receptors.

    Abstract

    Triheteromeric NMDA‐type glutamate receptors that contain two GluN1 and two different GluN2 subunits contribute to excitatory neurotransmission in the adult CNS. In the present study, we report properties of the triheteromeric GluN1/2B/2D NMDA receptor subtype that is expressed in distinct neuronal populations throughout the CNS. We show that neither GluN2B, nor GluN2D dominate the functional properties of GluN1/2B/2D receptors because agonist potencies, open probability and the glutamate deactivation time course of GluN1/2B/2D receptors are intermediate to those of diheteromeric GluN1/2B and GluN1/2D receptors. Furthermore, channel blockade of GluN1/2B/2D by extracellular Mg2+is intermediate compared to GluN1/2B and GluN1/2D, although GluN1/2B/2D is more sensitive to blockade by ketamine and memantine compared to GluN1/2B in the presence of physiological Mg2+. Subunit‐selective allosteric modulators have distinct activity at GluN1/2B/2D receptors, including GluN2B‐selective antagonists, ifenprodil, EVT‐101 and CP‐101‐606, which inhibit with similar potencies but with different efficacies at GluN1/2B/2D (∼65% inhibition) compared to GluN1/2B (∼95% inhibition). Furthermore, the GluN2B‐selective positive allosteric modulator spermine enhances responses from GluN1/2B/2D but not GluN1/2A/2B receptors. We show that these key features of allosteric modulation of recombinant GluN1/2B/2D receptors are also observed for NMDA receptors in hippocampal interneurons but not CA1 pyramidal cells, which is consistent with the expression of GluN1/2B/2D receptors in interneurons and GluN1/2A/2B receptors in pyramidal cells. Altogether, we uncover previously unknown functional and pharmacological properties of triheteromeric GluN1/2B/2D receptors that can facilitate advances in our understanding of their physiological roles in neural circuit function and therapeutic drug actions.

     
    more » « less
  4. Hippocampal seizures are a defining feature of mesial temporal lobe epilepsy (MTLE). Area CA1 of the hippocampus is commonly implicated in the generation of seizures, which may occur because of the activity of endogenous cell populations or of inputs from other regions within the hippocampal formation. Simultaneously observing activity at the cellular and network scales in vivo remains challenging. Here, we present a novel technology for simultaneous electrophysiology and multicellular calcium imaging of CA1 pyramidal cells (PCs) in mice enabled by a transparent graphene-based microelectrode array (Gr MEA). We examine PC firing at seizure onset, oscillatory coupling, and the dynamics of the seizure traveling wave as seizures evolve. Finally, we couple features derived from both modalities to predict the speed of the traveling wave using bootstrap aggregated regression trees. Analysis of the most important features in the regression trees suggests a transition among states in the evolution of hippocampal seizures. 
    more » « less
  5. Abstract

    The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp‐wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.

     
    more » « less