Abstract The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. Although the efficiency of the protected area network of the Amazon basin may be jeopardized by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses.The present and future (2070) distribution of the giant bony‐tongue fishArapaimaspp. (Arapaimidae) was modelled accounting for climate and habitat requirements, and with a consideration of dam presence (already existing and planned constructions) and hydroperiod (high‐ and low‐water stages). The amount of suitable environment that falls inside and outside the current network of protected areas was quantified to identify spatial conservation gaps.We predict that climate change will cause a decline in environmental suitability by 16.6% during the high‐water stage, and by 19.4% during the low‐water stage. About 70% of the suitable environments ofArapaimaspp. remain currently unprotected. The gap is higher by 0.7% during the low‐water stage. The lack of protection is likely to increase by 5% with future climate change effects. Both existing and projected dam constructions may hamper population flows between the central, Bolivian and Peruvian parts of the basin.We highlight protection gaps mostly in the south‐western part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus rivers and their tributaries. This study has shown the importance of integrating hydroperiod and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains within the protected area networks.
more »
« less
Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes
Abstract Expanding the global protected area network is critical for addressing biodiversity declines and the climate crisis. However, how climate change will affect ecosystem representation within the protected area network remains unclear. Here we use spatial climate analogs to examine potential climate-driven shifts in terrestrial ecoregions and biomes under a +2 °C warming scenario and associated implications for achieving 30% area-based protection targets. We find that roughly half of land area will experience climate conditions that correspond with different ecoregions and nearly a quarter will experience climates from a different biome. Of the area projected to remain climatically stable, 46% is currently intact (low human modification). The area required to achieve protection targets in 87% of ecoregions exceeds the area that is intact, not protected, and projected to remain climatically stable within those ecoregions. Therefore, we propose that prioritization schemes will need to explicitly consider climate-driven changes in patterns of biodiversity.
more »
« less
- Award ID(s):
- 1633831
- PAR ID:
- 10390696
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Kelp forests are one of the earth’s most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081–2100) compared to contemporary (2001–2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.more » « less
-
Abstract Although climate change projections indicate significant threats to terrestrial biodiversity, the effects are much more profound and striking in the marine environment. Here we explore how different facets of locally distinctiveα- andβ-diversity (changes in spatial composition) of seagrasses will respond to future climate change scenarios across the globe and compare their coverage with the existing network of marine protected areas. By using species distribution modelling and a dated phylogeny, we predict widespread reductions in species’ range sizes that will result in increases in seagrass weighted and phylogenetic endemism. These projected increases of endemism will result in divergent shifts in the spatial composition ofβ-diversity leading to differentiation in some areas and the homogenization of seagrass communities in other regions. Regardless of the climate scenario, the potential hotspots of these projected shifts in seagrassα- andβ-diversity are predicted to occur outside the current network of marine protected areas, providing new priority areas for future conservation planning that incorporate seagrasses. Our findings report responses of species to future climate for a group that is currently under represented in climate change assessments yet crucial in maintaining marine food chains and providing habitat for a wide range of marine biodiversity.more » « less
-
Abstract Maintaining regional‐scale freshwater connectivity is challenging due to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake‐stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We applied a coarse‐filter approach to identify potential freshwater corridors for diverse taxa by calculating connectivity scores for 385 lake‐stream networks across the conterminous United States based on network size, structure, resistance to fragmentation, and dam prevalence. We also identified 2080 disproportionately important lakes for maintaining intact networks (i.e., hubs; 2% of all network lakes) and analyzed the protection status of hubs and potential freshwater corridors. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north–south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of six lakes, 7.2 km north–south stream distance), indicating that the functional connectivity of the largest potential freshwater corridors in the conterminous United States currently may be diminished compared with smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8%–18% and 6%–20%, respectively), but were generally more protected in the western United States. Our results indicate that conterminous United States protection of major freshwater corridors and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well‐connected set of fresh waters (≥17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on restoring natural hydrologic connectivity at or near hubs, particularly in larger networks, less protected, or biodiverse regions, to support freshwater biodiversity conservation under climate change.more » « less
-
Protected areas are a critical tool for managing and ensuring the persistence of species biodiversity and land conservation. Their spatial extents are used to measure progress towards land protections by several international targets. However, governance type, management, and enforcement of these protected areas vary sub-nationally, and can influence the efficacy of the designation. Simultaneously, climatic conditions are coupled with species resilience, and changes in climate can be associated with shifts, expansions, and contractions of viable areas for habitat maintenance. Climate change is expected to change baseline climatic conditions globally and is likely to limit the benefits of terrestrial protected areas. Improved understanding of the relationship between governance, regional climate change, and protected areas can further enhance tracking of land cover change and inform protection strategies implemented across spatial scales. To aid in informed decision making at sub-national scales, we combine information on terrestrial sites in the World Database on Protected Areas, historic and future climate projections from CMIP6, and remotely sensed data on vegetation cover (NDVI). We leverage categorical differences in protected area management, as well as climate anomalies through time to explore their relationship to land cover change, and create additional tools for risk assessment that may be used in conjunction with local governance processesmore » « less
An official website of the United States government

