Abstract Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally.
more »
« less
Freshwater corridors in the conterminous United States: A coarse‐filter approach based on lake‐stream networks
Abstract Maintaining regional‐scale freshwater connectivity is challenging due to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake‐stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We applied a coarse‐filter approach to identify potential freshwater corridors for diverse taxa by calculating connectivity scores for 385 lake‐stream networks across the conterminous United States based on network size, structure, resistance to fragmentation, and dam prevalence. We also identified 2080 disproportionately important lakes for maintaining intact networks (i.e., hubs; 2% of all network lakes) and analyzed the protection status of hubs and potential freshwater corridors. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north–south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of six lakes, 7.2 km north–south stream distance), indicating that the functional connectivity of the largest potential freshwater corridors in the conterminous United States currently may be diminished compared with smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8%–18% and 6%–20%, respectively), but were generally more protected in the western United States. Our results indicate that conterminous United States protection of major freshwater corridors and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well‐connected set of fresh waters (≥17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on restoring natural hydrologic connectivity at or near hubs, particularly in larger networks, less protected, or biodiverse regions, to support freshwater biodiversity conservation under climate change.
more »
« less
- PAR ID:
- 10392822
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lake water residence time and depth are known to be strong predictors of phosphorus (P) retention. However, there is substantial variation in P retention among lakes with the same depth and residence time. One potential explanatory factor for this variation is differences in freshwater connectivity of lakes (i.e., the type and amount of freshwater connections to a lake), which can influence watershed P trapping or the particulate load fraction of P delivered to lakes via stream connections. To examine the relationship between P retention and connectivity, we quantified several different measures of connectivity including those that reflect downstream transport of material (sediment, water, and nutrients) within lake‐stream networks (lake‐stream‐based metrics) as well as those that reflect transport of material from hillslope and riparian areas adjacent to watershed stream networks (stream‐based metrics). Because it is not always clear what spatial extent is appropriate for determining functional differences in connectivity among lakes, we compared connectivity metrics at two important spatial extents: the lake subwatershed extent and the lake watershed extent. We found that variation in P retention among lakes was more strongly associated with connectivity metrics measured at the broader lake watershed extent rather than metrics measured at the finer lake subwatershed extent. Our results suggest that both connectivity between lakes and streams as well as connectivity of lakes and their terrestrial watersheds influence P retention.more » « less
-
null (Ed.)Stream and lake fishes are important economic and recreational resources that respond to alterations in their surrounding watersheds and serve as indicators of ecological stressors on aquatic ecosystems. Research suggests that fish species diversity is largely influenced by surface water connectivity, or the lack thereof; however, few studies consider freshwater connections and their effect on both lake and stream fish communities across broad spatial extents. We used fish data from 559 lakes and 854 streams from the midwestern–northeastern United States to examine the role of surface water connectivity on fish species richness and community composition. We found that although lakes and streams share many species, connectivity had a positive effect on species richness across lakes and streams and helped explain species composition. Taking an integrated approach that includes both lake and stream fish communities and connectivity among freshwaters helps inform scientific understanding of what drives variation in fish species diversity at broad spatial scales and can help managers who are faced with planning for state-, regional-, or national-scale monitoring and restoration.more » « less
-
Abstract Depth regulates many attributes of aquatic ecosystems, but relatively few lakes are measured, and existing datasets are biased toward large lakes. To address this, we used a large dataset of maximum (Zmax;n = 16,831) and mean (Zmean;n = 5,881) depth observations to create new depth models, focusing on lakes < 1,000 ha. We then used the models to characterize patterns in lake basin shape and volume. We included terrain metrics, water temperature and reflectance, polygon attributes, and other predictors in a random forest model. Our final models generally outperformed existing models (Zmax; root mean square error [RMSE] = 8.0 m andZmean; RMSE = 3.0 m). Our models show that lake depth followed a Pareto distribution, with 2.8 orders of magnitude fewer lakes for an order of magnitude increase in depth. In addition, despite orders of magnitude variation in surface area, most size classes had a modal maximum depth of ~ 5 m. Concave (bowl‐shaped) lake basins represented 79% of all lakes, but lakes were more convex (funnel‐shaped) as surface area increased. Across the conterminous United States, 9.8% of all lake water was within the top meter of the water column, and 48% in the top 10 m. Excluding the Laurentian Great Lakes, we estimate the total volume in the conterminous United States is 1,057–1,294 km3, depending on whetherZmaxorZmeanwas modeled. Lake volume also exhibited substantial geographic variation, with high volumes in the upper Midwest, Northeast, and Florida and low volumes in the southwestern United States.more » « less
-
Abstract Stream drying is increasing globally, with widespread impacts on stream ecosystems. Here, we investigated how the impacts of drying on stream ecosystem connectivity might depend on stream network size and the location of drying within the stream network. Using 11 stream networks from across the United States, we simulated drying scenarios in which we varied the location and spatial extent of drying. We found that the rate of connectivity loss varied with stream network size, such that larger stream networks lost connectivity more rapidly than smaller stream networks. We also found that the rate of connectivity loss varied with the location of drying. When drying occurred in the mainstem, even small amounts of drying resulted in rapid losses in ecosystem connectivity. When drying occurred in headwater reaches, small amounts of drying had little impact on connectivity. Beyond a certain threshold, however, connectivity declined rapidly with further increases in drying. Given the increasing stream drying worldwide, our findings underscore the need for managers to be particularly vigilant about fragmentation when managing at large spatial scales and when stream drying occurs in mainstem reaches.more » « less
An official website of the United States government
