We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single state. Such non-Hermitian degeneracies can occur at a real-valued frequency without any associated noise or nonlinearity, in contrast to EPs in lasers. The absorption line shape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the S matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave.
more »
« less
Coherent perfect absorption at an exceptional point
Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies.
more »
« less
- PAR ID:
- 10390728
- Date Published:
- Journal Name:
- Science
- Volume:
- 373
- Issue:
- 6560
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1261 to 1265
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Materials and their geometry make up the tools for designing nanophotonic devices. In the past, the real part of the refractive index of materials has remained the focus for designing novel devices. The absorption, or imaginary index, was tolerated as an undesirable effect. However, a clever distribution of imaginary index of materials offers an additional degree of freedom for designing nanophotonic devices. Non-Hermitian optics provides a unique opportunity to take advantage of absorption losses in materials to enable unconventional physical effects. Typically occurring near energy degeneracies called exceptional points, these effects include enhanced sensitivity, unidirectional invisibility, and non-trivial topology. In this work, we leverage plasmonic absorption losses (or imaginary index) as a design parameter for non-Hermitian, passive parity-time symmetric metasurfaces. We show that coupled plasmonic-photonic resonator pairs, possessing a large asymmetry in absorptive losses but balanced radiative losses, exhibit an optical phase transition at an exceptional point and directional scattering. These systems enable new pathways for metasurface design using phase, symmetry, and topology as powerful tools.more » « less
-
Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter interactions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space.more » « less
-
Abstract Exceptional point degeneracies (EPDs) in the resonant spectrum of non-Hermitian systems have been recently employed for sensing due to the sublinear response of the resonance splitting when a perturbant interacts with the sensor. The sublinear response provides high sensitivity to small perturbations and a large dynamic range. However, the resonant-based EPD sensing abides to the resolution limit imposed by the resonant quality factors and by the signal-to-noise ratio reduction due to gain-elements. Moreover, it is susceptible to local mechanical disturbances and imperfections. Here, we propose a passive non-resonant (NR) EPD-sensor that is resilient to losses, local cavity variations, and noise. The NR-EPD describes the coalescence of Bloch eigenmodes associated with the spectrum of transfer matrices of periodic structures. This coalescence enables scattering cross-section cusps with a sublinear response to small detunings away from an NR-EPD. We show that these cusps can be utilized for enhanced noise-resilient sensing.more » « less
-
An oscillator made of a periodic waveguide comprising of uniform lossless segments with discrete nonlinear gain and radiating resistive elements prefers to operate at exceptional point of degeneracy (EPD). The steady-state regime is an EPD with π phase shift between unit cells, for various choices of small signal gain of the nonlinear elements and number of unit cells. We demonstrated this fact by monitoring both current and voltage across each nonlinear gain element and finding its effective admittance at the oscillating frequency and checking the degeneracy of the eigenmodes at such point. The EPD studied here is very promising for many applications that incorporate discrete distributed coherent sources and radiation-loss elements. Operating in the vicinity of such special degeneracy conditions may lead to potential performance enhancement in the various microwave, THz and optical systems with distributed gain and radiation, paving the way for a new class of active integrated antenna arrays and radiating laser arrays.more » « less
An official website of the United States government

