Federated Averaging (FedAvg) remains the most popular algorithm for Federated Learning (FL) optimization due to its simple implementation, stateless nature, and privacy guarantees combined with secure aggregation. Recent work has sought to generalize the vanilla averaging in FedAvg to a generalized gradient descent step by treating client updates as pseudo-gradients and using a server step size. While the use of a server step size has been shown to provide performance improvement theoretically, the practical benefit of the server step size has not been seen in most existing works. In this work, we present FedExP, a method to adaptively determine the server step size in FL based on dynamically varying pseudo-gradients throughout the FL process. We begin by considering the overparameterized convex regime, where we reveal an interesting similarity between FedAvg and the Projection Onto Convex Sets (POCS) algorithm. We then show how FedExP can be motivated as a novel extension to the extrapolation mechanism that is used to speed up POCS. Our theoretical analysis later also discusses the implications of FedExP in underparameterized and non-convex settings. Experimental results show that FedExP consistently converges faster than FedAvg and competing baselines on a range of realistic FL datasets.
more »
« less
Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systems-oriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features:(1) periodic averaging where models are updated locally at devices and only periodically averaged at the server;(2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized message-passing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
more »
« less
- Award ID(s):
- 1910056
- PAR ID:
- 10390769
- Date Published:
- Journal Name:
- International Conference on Artificial Intelligence and Statistics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Communication-efficient SGD algorithms, which allow nodes to perform local updates and periodically synchronize local models, are highly effective in improving the speed and scalability of distributed SGD. However, a rigorous convergence analysis and comparative study of different communication-reduction strategies remains a largely open problem. This paper presents a unified framework called Cooperative SGD that subsumes existing communication-efficient SGD algorithms such as periodic-averaging, elastic-averaging, and decentralized SGD. By analyzing Cooperative SGD, we provide novel convergence guarantees for existing algorithms. Moreover, this framework enables us to design new communication-efficient SGD algorithms that strike the best balance between reducing communication overhead and achieving fast error convergence with a low error floor.more » « less
-
When training machine learning models using stochastic gradient descent (SGD) with a large number of nodes or massive edge devices, the communication cost of synchronizing gradients at every iteration is a key bottleneck that limits the scalability of the system and hinders the benefit of parallel computation. Local-update SGD algorithms, where worker nodes perform local iterations of SGD and periodically synchronize their local models, can effectively reduce the communication frequency and save the communication delay. In this paper, we propose a powerful framework, named Cooperative SGD, that subsumes a variety of local-update SGD algorithms (such as local SGD, elastic averaging SGD, and decentralized parallel SGD) and provides a unified convergence analysis. Notably, special cases of the unified convergence analysis provided by the cooperative SGD framework yield 1) the first convergence analysis of elastic averaging SGD for general non-convex objectives, and 2) improvements upon previous analyses of local SGD and decentralized parallel SGD. Moreover, we design new algorithms such as elastic averaging SGD with overlapped computation and communication, and decentralized periodic averaging which are shown to be 4x or more faster than the baseline in reaching the same training loss.more » « less
-
Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods.more » « less
-
Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods.more » « less
An official website of the United States government

