skip to main content


Title: Fabrication of Waveguides and Gradient Index Flat Optics by Nanoimprinting Refractive Index

We report the fabrication of gradient index flat optics and waveguides using the ‘nanoimprinting refractive index’ (NIRI) technique applied to mesoporous silicon substrates. Optical wavefront shaping and waveguiding are demonstrated in the visible and near-infrared respectively.

 
more » « less
Award ID(s):
1825787 2047015
NSF-PAR ID:
10390795
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electro-Optics, Technical Digest Series
Page Range / eLocation ID:
STh4P.6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Indexing reference sequences for search—both individual genomes and collections of genomes—is an important building block for many sequence analysis tasks. Much work has been dedicated to developing full-text indices for genomic sequences, based on data structures such as the suffix array, the BWT and the FM-index. However, the de Bruijn graph, commonly used for sequence assembly, has recently been gaining attention as an indexing data structure, due to its natural ability to represent multiple references using a graphical structure, and to collapse highly-repetitive sequence regions. Yet, much less attention has been given as to how to best index such a structure, such that queries can be performed efficiently and memory usage remains practical as the size and number of reference sequences being indexed grows large.

    Results

    We present a novel data structure for representing and indexing the compacted colored de Bruijn graph, which allows for efficient pattern matching and retrieval of the reference information associated with each k-mer. As the popularity of the de Bruijn graph as an index has increased over the past few years, so have the number of proposed representations of this structure. Existing structures typically fall into two categories; those that are hashing-based and provide very fast access to the underlying k-mer information, and those that are space-frugal and provide asymptotically efficient but practically slower pattern search. Our representation achieves a compromise between these two extremes. By building upon minimum perfect hashing and making use of succinct representations where applicable, our data structure provides practically fast lookup while greatly reducing the space compared to traditional hashing-based implementations. Further, we describe a sampling scheme for this index, which provides the ability to trade off query speed for a reduction in the index size. We believe this representation strikes a desirable balance between speed and space usage, and allows for fast search on large reference sequences.

    Finally, we describe an application of this index to the taxonomic read assignment problem. We show that by adopting, essentially, the approach of Kraken, but replacing k-mer presence with coverage by chains of consistent unique maximal matches, we can improve the space, speed and accuracy of taxonomic read assignment.

    Availability and implementation

    pufferfish is written in C++11, is open source, and is available at https://github.com/COMBINE-lab/pufferfish.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Angularly-resolved light scattering has been proven to be an early detector of subtle changes in organelle size due to its sensitivity to scatterer size and refractive index contrast. However, for cells immersed in media with a refractive index close to 1.33, the cell itself acts as a larger scatterer and contributes its own angular signature. This whole-cell scattering, highly dependent on the cell’s shape and size, is challenging to distinguish from the desired organelle scattering signal. This degrades the accuracy with which organelle size information can be extracted from the angular scattering. To mitigate this effect, we manipulate the refractive index of the immersion medium by mixing it with a water-soluble, biocompatible, high-refractive-index liquid. This approach physically reduces the amount of whole-cell scattering by minimizing the refractive index contrast between the cytosol and the modified medium. We demonstrate this technique on live cells adherent on a coverslip, using Fourier transform light scattering to compute the angular scattering from complex field images. We show that scattering from the cell: media refractive index contrast contributes significant scattering at angles up to twenty degrees and that refractive index-matching reduces such low-angle scatter by factors of up to 4.5. This result indicates the potential of refractive index-matching for improving the estimates of organelle size distributions in single cells.

     
    more » « less
  3. Abstract

    A major challenge for negative‐index acoustic metamaterials is increasing their operational frequency to the MHz range in water for applications such as biomedical ultrasound. Herein, a novel technology to realize acoustic metamaterials in water using microstructured silicon chips as unit cells that incorporate silicon nitride membranes and Helmholtz resonators with dimensions below 100 μm fabricated using clean‐room microfabrication technology is presented. The silicon chip unit‐cells are then assembled to form periodic structures that result in a negative‐index metamaterial. Finite‐element method (FEM) simulations of the metamaterial show a negative‐index branch in the dispersion relation in the 0.25–0.35 MHz range. The metamaterial is characterized experimentally using laser‐doppler vibrometry, showing opposite phase and group velocities, a signature of negative‐index materials, and is in close agreement with FEM simulations. The experimental measurements also show that the magnitude of phase and group velocities increase as the frequency increases within the negative‐index band, confirming the negative‐index behavior of the material. Acoustic indices from –1 to –5 are reached with respect to water in the 0.25–0.35 MHz range. The use of silicon technology microfabrication to produce acoustic metamaterials for operation in water opens a new road to reach frequencies relevant for biomedical ultrasound  applications.

     
    more » « less
  4. Abstract

    This study compares various drought indices, the Palmer Drought Severity Index (PDSI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Standardized Precipitation Index (SPI), and the uncertainties in each to the input data from which they are derived. The abilities of the PDSI, SPEI, and SPI to capture drought periods are assessed through a comparison with soil moisture estimates from two generations of the Global Land Data Assimilation System (GLDAS). This comparison shows that the skill with which a drought index represents variations in soil moisture does not necessarily improve when evapotranspiration is included (i.e., PDSI/SPEI rather than SPI), though this depends on location and the time scale of the drought. The differences in the abilities of the drought indices to represent soil moisture are also compared to the magnitude of the uncertainty in each index arising from the choice of input data. In many cases, the uncertainties in the variations of the PDSI, SPEI, and SPI to the choice of input data are larger in magnitude than the differences between the indices themselves, particularly when considering the dry tails of the distribution. The results show that no one drought index outperforms the others during drought conditions.

     
    more » « less
  5. Abstract

    Optimal scheduling in single-server queueing systems is a classic problem in queueing theory. The Gittins index policy is known to be the optimal nonanticipating policy minimizing the mean delay in the M/G/1 queue. While the Gittins index is thoroughly characterized for ordinary jobs whose state is described by the attained service, it is not at all the case with jobs that have more complex structure. Recently, a class of such jobs, multistage jobs, were introduced, and it was shown that the computation of Gittins index of a multistage job decomposes into separable computations for the individual stages. The characterization is, however, indirect in the sense that it relies on the recursion for an auxiliary function (the so-called SJP—single-job profit—function) and not for the Gittins index itself. In this paper, we focus on sequential multistage jobs, which have a fixed sequence of stages, and prove that, for them, it is possible to compute the Gittins index directly by recursively combining the Gittins indices of its individual stages. In addition, we give sufficient conditions for the optimality of the FCFS and SERPT disciplines for scheduling sequential multistage jobs. On the other hand, we demonstrate that, for nonsequential multistage jobs, it is better to compute the Gittins index by utilizing the SJP functions.

     
    more » « less