skip to main content


This content will become publicly available on February 15, 2025

Title: Multilayer dielectric reflector using low-index nanolattices

Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation.

 
more » « less
NSF-PAR ID:
10490985
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
4
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1093
Size(s):
["Article No. 1093"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Three-dimensional (3D) nanostructures play a crucial role in nanophotonics, lasers, and optical systems. This article reports on the fabrication of 3D nanostructures consisting of opal structures that are spatially aligned to an array of holes defined in the photoresist. The proposed method uses colloidal lithography to pattern a hexagonal array of holes, which are then used to direct the subsequent 3D assembly of colloidal particles. This approach allows the 3D opal structures to be aligned with the 2D array of holes, which can enhance spatial-phase coherence and reduce defects. The polymer patterns can be used as a sacrificial template for atomic layer deposition and create free-standing nanolattices. The final structure consists of a combination of nanolattice, upon which controlled deposition of opal structures is achieved. These structures result in nanostructured materials with high porosity, which is essential to create low-index materials for nanophotonics. A thick layer of titanium oxide with high refractive index is deposited over nanolattices to demonstrate the mechanical stability of underlying structures. These nanolattice structures with precisely controlled height can serve as a low-index layer and can find applications in Bragg reflectors, nanophotonics, and optical multilayers.

     
    more » « less
  2. Abstract

    Circular supply chains require more accurate product labeling and traceability. In the apparel industry, product life cycle management is hampered in part by inaccurate, poorly readable, and detachable standard care labels. Instead, this article seeks to enable a labeling system capable of being integrated into the fabric itself, intrinsically recyclable, low‐cost, encodes information, and allows rapid readout after years of normal use. In this work, all‐polymer photonic crystals are designed and then fabricated by thermal drawing with >100 layers having sub‐micrometer individual thickness and low refractive index contrast (Δn = 0.1). The fibers exhibit reflectance features in the 1–5.5 µm wavelength range, characterized using insitu Fourier transform infrared spectroscopy. Drawn photonic fibers are then woven into fabrics, characterized by near‐infrared spectroscopy and short‐wave infrared imaging, techniques commonly used in industrial facilities for sorting materials. The fibers’ optical design also enables the use of overtone peaks to avoid overlap with parasitic molecular absorption, substantially improving the signal‐to‐noise ratio (and therefore ease and speed) of readout. The ability to produce kilometers of fiber that are compatible with existing textile manufacturing processes, coupled with low input material cost, make these a potential market‐viable improvement over the standard care label.

     
    more » « less
  3. Abstract

    Electrochromic properties can be enhanced by constructing photonic architectures, in which the reflectance contributes to optical modulation along with the intrinsic dynamic absorptivity of the material. However, optimization of reflectance is challenging without a rational design approach. Here, electrochemically tunable Bragg reflectors are demonstrated that are tuned to be highly transparent in the “off” state, achieving synergistic dynamic optical modulation of absorption and reflection in the visible and near‐infrared range. These Bragg stacks are composed of alternating doped semiconductor nanocrystal (NC) layers of 5 nm sized oxygen vacancy‐doped WO3−xand 15 nm sized 0.4 at% Sn:In2O3NCs. Combining judicious NC selection and processing optimization with guidance from optical simulations, optimized Bragg stacks are implemented for electrochromic window applications. NCs with high absorption coefficients are essential for strong transmission modulation, though this characteristic limits the dynamic range of the Bragg reflectance. Optimal reflectance modulation including a highly transparent “off” state is confirmed with in situ reflectance and transmittance measurement. More broadly, ligand‐stripped NCs can enable fabrication of complex device architectures on low‐cost flexible substrates. These results guide the design rules for accessing different types of doped semiconductor NC‐based tunable Bragg stacks, an exemplary photonic structure, over a broad wavelength range.

     
    more » « less
  4. Abstract

    The fabrication of periodic 3D nanostructures with uniform material properties has been widely investigated and is important for applications in photonics, mechanics, and energy storage. However, creating nanostructures with spatially varying lattice geometry and material composition is still largely an unexplored challenge in nanofabrication. This work presents the fabrication of non‐uniform nanolattices by patterning multiple layers of 3D nanostructures using phase shift lithography and atomic layer deposition. By controlling the processing parameters, the lattice geometry and material composition of each individual nanolattice layer can be tailored to create arbitrary material property profiles. Using the proposed method, a five‐layer nanolattice with spatially varying porosity and oxide materials has been demonstrated. This process can be used to create gradient‐index antireflection nanostructures, and a fabricated four‐layer nanolattice structure consisting of TiO2and Al2O3with gradually varying porosity reduces more than 90% of the specular reflectance from a silicon substrate. By enabling nanolattices with arbitrary profiles in physical properties, the demonstrated technique can find broad applications in nanophotonics, graded filters, energy storage systems, and nanoarchitected films.

     
    more » « less
  5. Abstract

    Planar microcavities with strong light–matter coupling, monolithically processed fully from solution, consisting of two polymer‐based distributed Bragg reflectors (DBRs) comprising alternating layers of a high‐refractive‐index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low‐refractive‐index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b‐PDI‐1) film positioned at the antinode of the optical mode. Strong light–matter coupling is achieved in these structures at the target excitation of theb‐PDI‐1. Indeed, the energy‐dispersion relation (energy vs in‐plane wavevector or output angle) in reflectance and the group delay of transmitted light in the microcavities show a clear anti‐crossing—an energy gap between two distinct exciton‐polariton dispersion branches. The agreement between classical electrodynamic simulations of the microcavity response and the experimental data demonstrates that the entire microcavity stack can be controllably produced as designed. Promisingly, the refractive index of the inorganic/organic hybrid layers used in the microcavity DBRs can be precisely manipulated between values of 1.50 to 2.10. Hence, microcavities with a wide spectral range of optical modes might be designed and produced with straightforward coating methodologies, enabling fine‐tuning of the energy and lifetime of the microcavities‘ optical modes to harness strong light–matter coupling in a wide variety of solution processable active materials.

     
    more » « less