skip to main content


Title: What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories
Occupant behavior has a significant impact on building systems’ operations and efficiency. As a result, several innovative approaches have been introduced to quantify the dynamics of occupants within indoor environments, such as interactions with different building systems and the impact of various feedback and interventions to reduce the building energy consumption. To achieve this, researchers have highlighted the importance of reducing energy consumption without impacting occupant comfort. As a result, there is an increasing body of research evaluating how different theories of behavior across a variety of disciplines can explain occupant interactions with building systems. Future progress in this area calls for an in-depth understanding of behavioral theories in explaining occupant interactions with different building systems. In this paper, we have used a structured literature review approach to investigate how different psychological, sociological, and economic theories have been applied to explain occupant interactions with heating and cooling (HVAC systems), opening windows and ventilation, lighting and shading, electronic appliances, domestic hot water, as well as energy conservation behaviors. Throughout the paper, we identify the most common theories and methodologies applied within the existing research, general findings related to how occupants interact with different building systems, as well as a number of identified gaps within the literature. Finally, we provide a discussion on directions for future research studies in this area under each building system.  more » « less
Award ID(s):
1823325
NSF-PAR ID:
10189172
Author(s) / Creator(s):
Date Published:
Journal Name:
Building and environment
Volume:
179
ISSN:
0360-1323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adaptive interactions between building occupants and their surrounding environments affect both energy use and environmental quality, as demonstrated by a large body of modeling research that quantifies the impacts of occupant behavior on building operations. Yet, available occupant field data are insufficient to explore the mechanisms that drive this interaction. This paper introduces data from a one year study of 24 U.S. office occupants that recorded a comprehensive set of possible exogenous and endogenous drivers of personal comfort and behavior over time. The longitudinal data collection protocol merges individual thermal comfort, preference, and behavior information from online daily surveys with datalogger readings of occupants’ local thermal environments and control states, yielding 2503 survey responses alongside tens of thousands of concurrent behavior and environment measurements. These data have been used to uncover links between the built environment, personal variables, and adaptive actions, and the data contribute to international research collaborations focused on understanding the human-building interaction.

     
    more » « less
  2. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting. 
    more » « less
  3. Active shooter events are not emergencies that can be reasonably anticipated. However, these events do occur more than we think, and there is a critical need for an effective emergency preparedness plan that can increase the likelihood of saving lives and reducing casualties in the event of an active shooting incident. There has been a major concern about the lack of tools available to allow for modeling and simulation of human behavior during emergency response training. Over the past few decades, virtual reality-based training for emergency response and decision making has been recognized as a novel alternative for disaster preparedness. This paper presents an immersive virtual reality (VR) training module for active shooter events for a building emergency response. There are two immersive active shooter modules developed: occupant’s module and Security personnel module. We have developed an immersive virtual reality training module for active shooter events using an Oculus for the course of action, visualization, and situational awareness for active shooter events. The immersive environment is implemented in Unity 3D where the user has an option to enter the environment as security personnel or as an occupant in the building. The immersive VR training module offers a unique platform for emergency response and decision making training. The platform allows for collecting data on different what-if scenarios in response to active shooter events that impact the actions of security personnel and occupants in a building. The data collected can be used to educate security personnel on how to reduce response times. Moreover, security personnel can be trained to respond to a variety of emergencies safely and securely without ever being exposed to real-world dangers. 
    more » « less
  4. Abstract

    Water/oxide interfaces are ubiquitous on earth and show significant influence on many chemical processes. For example, understanding water and solute adsorption as well as catalytic water splitting can help build better fuel cells and solar cells to overcome our looming energy crisis; the interaction between biomolecules and water/oxide interfaces is one hypothesis to explain the origin of life. However, knowledge in this area is still limited due to the difficulty of studying water/solid interfaces. As a result, research using increasingly sophisticated experimental techniques and computational simulations has been carried out in recent years. Although it is difficult for experimental techniques to provide detailed microscopic structural information, molecular dynamics (MD) simulations have satisfactory performance. In this review, we discuss classical and ab initio MD simulations of water/oxide interfaces. Generally, we are interested in the following questions: How do solid surfaces perturb interfacial water structure? How do interfacial water molecules and adsorbed solutes affect solid surfaces and how do interfacial environments affect solvent and solute behavior? Finally, we discuss progress in the application of neural network potential based MD simulations, which offer a promising future because this approach has already enabled ab initio level accuracy for very large systems and long trajectories.

    This article is categorized under:

    Theoretical and Physical Chemistry > Spectroscopy

    Molecular and Statistical Mechanics > Molecular Interactions

    Structure and Mechanism > Molecular Structures

     
    more » « less
  5. The key to optimal occupant comfort as well as resource utilization in a smart building is to provide personalized control over smart appliances. Additionally, with an exponentially growing Internet-of-Things (IoT), reducing the need of frequent user attention and effort involving building management to control and manage an enormous number of smart devices becomes inevitable. One crucial step to enable occupant-specific personalized spaces in smart buildings is accurate identification of different occupants. In this paper, we introduce SolarWalk to show that small and unobtrusive indoor photovoltaic harvesters can identify occupants in smart home scenarios. The key observations are that i) photovoltaics are commonly used as a power source for many indoor energy-harvesting devices, ii) a PV cell's output voltage is perturbed differently when different persons pass in close range, creating an unique signature voltage trace, and iii) the voltage pattern can also determine the person' walking direction. SolarWalk identifies occupants in a smart home by training a classifier with their shadow voltage traces. SolarWalk achieves an average accuracy of 88% to identify five occupants in a home and on average 77% accurate to determine whether someone entered or exited the room. SolarWalk enables an accurate occupant identification system that is non-invasive, ubiquitous, and does not require dedicated hardware and rigorous installation. 
    more » « less