skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UbiTrack: enabling scalable & low-cost device localization with onboard wifi
Wireless sensing and the Internet of Things support real-time monitoring and data-driven control of the built environment, enabling more sustainable and responsive infrastructure. As buildings and physical structures tend to be large and complex, instrumenting them to support a wide range of applications often requires numerous sensors distributed over a large area. One impediment to this type of large-scale sensing is simply tracking where exactly devices are over time, as the physical infrastructure is updated and interacted with over time. Having low-cost but accurate localization for devices (instead of users) would enable scalable IoT network management, but current localization approaches do not provide a suitable tradeoff in terms of cost, energy, and accuracy for low power devices in unknown environments.  more » « less
Award ID(s):
1823325
PAR ID:
10390835
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BuildSys '21: Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
Page Range / eLocation ID:
11 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Applications of micro unmanned aerial vehicles (UAVs) are gradually expanding into complex urban and natural environments. Despite noticeable progress, flying robots in obstacle-rich environments is still challenging. On-board processing for detecting and avoiding obstacles is possible, but at a significant computational expense, and with significant limitations (e.g., for obstacles with small cross sections, such as wires). A low-cost alternative is to mitigate physical contacts through a cage or other similar protective devices. In this paper, we propose to transform these passive protective devices into functional sensors: we introduce a suspended rim combined with a central base measuring the relative displacement of the rim; we provide a full mechanical design, and derive solutions to the inverse kinematics for recovering the collision direction in real time. As a proof of concept, we show the benefits of this novel form of sensing by embedding it in a traditional particle filter for self-localization in a known environment; our experiments show that localization is possible with a minimal sacrifice in payload capacity. 
    more » « less
  2. Tag localization is crucial for many context-aware and automation applications in smart homes, retail stores, or warehouses. While custom localization technologies (e.g RFID) have the potential to support low-cost battery-free tag tracking, the cost and complexity of commissioning a space with beacons or readers has stifled adoption. In this paper, we explore how WiFi backscatter localization can be realized using the existing WiFi infrastructure already deployed for data applications. We present a new approach that leverages existing WiFi infrastructure to enable extremely low-power and accurate tag localization relative to a single scanning device. First, we adopt an ultra-low power tag design in which the tag blindly modulates ongoing WiFi packets using On-Off Keying (OOK). Then, we utilize the underlying physical properties of multipath propagation to detect the passive wireless reflection from the tag in the presence of rich multipath propagations. Finally, we localize the tag from a single receiver by forming a triangle between the tag reflection and the LoS path between the two WiFi transceivers. We implement TagFi using a customized backscatter tag and off-the-shelf WiFi chipsets. Our empirical results in a cluttered office building demonstrate that TagFi achieves a median localization accuracy of 0.2m up to 8 meters range. 
    more » « less
  3. Indoor localization is emerging as an important application domain for enhanced navigation (or tracking) of people and assets in indoor locales such as buildings, malls, and underground mines. Most indoor localization solutions proposed in prior work do not deliver good accuracy without expensive infrastructure (and even then, the results may lack consistency). Ambient wireless received signal strength indication (RSSI) based fingerprinting using smart mobile devices is a low-cost approach to the problem. However, creating an accurate ‘fingerprinting-only’ solution remains a challenge. This paper presents a novel approach to transform Wi-Fi signatures into images, to create a scalable fingerprinting framework based on Convolutional Neural Networks (CNNs). Our proposed CNN based indoor localization framework (CNN-LOC) is validated across several indoor environments and shows improvements over the best known prior works, with an average localization error of < 2 meters. 
    more » « less
  4. In this work, we integrate digital twin technology with RFID localization to achieve real-time monitoring of physical items in a large-scale complex environment, such as warehouses and retail stores. To map the item-level realities into a digital environment, we proposed a sensor fusion technique that merges a 3D map created by RGB-D and tracking cameras with real-time RFID tag location estimation derived from our novel Bayesian filter approach. Unlike mainstream localization methods, which rely on phase or RSSI measurements, our proposed method leverages a fixed RF transmission power model. This approach extends localization capabilities to all existing RFID devices, offering a significant advancement over conventional techniques. As a result, the proposed method transforms any RFID device into a digital twin scanner with the support of RGB-D cameras. To evaluate the performance of the proposed method, we prototype the system with commercial off-the-shelf (COTS) equipment in two representative retail scenarios. The overall performance of the system is demonstrated in a mock retail apparel store covering an area of 207 m2, while the quantitative experimental results are examined in a small-scale testbed to showcase the accuracy of item-level tag localization. 
    more » « less
  5. Energy-efficient sensing with physically secure communication for biosensors on, around, and within the human body is a major area of research for the development of low-cost health care devices, enabling continuous monitoring and/or secure perpetual operation. When used as a network of nodes, these devices form the Internet of Bodies, which poses challenges including stringent resource constraints, simultaneous sensing and communication, and security vulnerabilities. Another major challenge is to find an efficient on-body energy-harvesting method to support the sensing, communication, and security submodules. Due to limitations in the amount of energy harvested, we require a reduction in energy consumed per unit information, making the use of in-sensor analytics and processing imperative. In this article, we review the challenges and opportunities of low-power sensing, processing, and communication with possible powering modalities for future biosensor nodes. Specifically, we analyze, compare, and contrast ( a) different sensing mechanisms such as voltage/current domain versus time domain, ( b) low-power, secure communication modalities including wireless techniques and human body communication, and ( c) different powering techniques for wearable devices and implants. 
    more » « less