skip to main content


Title: The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site
Abstract The Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM) methylates the adenine of hemimethylated GANTC after replication. Here we present the structure of CcrM in complex with double-stranded DNA containing the recognition sequence. CcrM contains an N-terminal methyltransferase domain and a C-terminal nonspecific DNA-binding domain. CcrM is a dimer, with each monomer contacting primarily one DNA strand: the methyltransferase domain of one molecule binds the target strand, recognizes the target sequence, and catalyzes methyl transfer, while the C-terminal domain of the second molecule binds the non-target strand. The DNA contacts at the 5-base pair recognition site results in dramatic DNA distortions including bending, unwinding and base flipping. The two DNA strands are pulled apart, creating a bubble comprising four recognized base pairs. The five bases of the target strand are recognized meticulously by stacking contacts, van der Waals interactions and specific Watson–Crick polar hydrogen bonds to ensure high enzymatic specificity.  more » « less
Award ID(s):
1808775
NSF-PAR ID:
10390862
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract DNA adenine methylation by Caulobacter crescentus Cell Cycle Regulated Methyltransferase (CcrM) is an important epigenetic regulator of gene expression. The recent CcrM-DNA cocrystal structure shows the CcrM dimer disrupts four of the five base pairs of the (5′-GANTC-3′) recognition site. We developed a fluorescence-based assay by which Pyrrolo-dC tracks the strand separation event. Placement of Pyrrolo-dC within the DNA recognition site results in a fluorescence increase when CcrM binds. Non-cognate sequences display little to no fluorescence changes, showing that strand separation is a specificity determinant. Conserved residues in the C-terminal segment interact with the phospho-sugar backbone of the non-target strand. Replacement of these residues with alanine results in decreased methylation activity and changes in strand separation. The DNA recognition mechanism appears to occur with the Type II M.HinfI DNA methyltransferase and an ortholog of CcrM, BabI, but not with DNA methyltransferases that lack the conserved C-terminal segment. The C-terminal segment is found broadly in N4/N6-adenine DNA methyltransferases, some of which are human pathogens, across three Proteobacteria classes, three other phyla and in Thermoplasma acidophilum, an Archaea. This Pyrrolo-dC strand separation assay should be useful for the study of other enzymes which likely rely on a strand separation mechanism. 
    more » « less
  2. Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein–DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA. 
    more » « less
  3. Zhou, Jin-Qiu (Ed.)
    The telomere G-strand binding protein Pot1 plays multifaceted roles in telomere maintenance and protection. We examined the structure and activities of Pot1 in Ustilago maydis , a fungal model that recapitulates key features of mammalian telomere regulation. Compared to the well-characterized primate and fission yeast Pot1 orthologs, Um Pot1 harbors an extra N-terminal OB-fold domain (OB-N), which was recently shown to be present in most metazoans. Um Pot1 binds directly to Rad51 and regulates the latter’s strand exchange activity. Deleting the OB-N domain, which is implicated in Rad51-binding, caused telomere shortening, suggesting that Pot1-Rad51 interaction facilitates telomere maintenance. Depleting Pot1 through transcriptional repression triggered growth arrest as well as rampant recombination, leading to multiple telomere aberrations. In addition, telomere repeat RNAs transcribed from both the G- and C-strand were dramatically up-regulated, and this was accompanied by elevated levels of telomere RNA-DNA hybrids. Telomere abnormalities of pot1 -deficient cells were suppressed, and cell viability was restored by the deletion of genes encoding Rad51 or Brh2 (the BRCA2 ortholog), indicating that homology-directed repair (HDR) proteins are key mediators of telomere aberrations and cellular toxicity. Together, these observations underscore the complex physical and functional interactions between Pot1 and DNA repair factors, leading to context-dependent and dichotomous effects of HDR proteins on telomere maintenance and protection. 
    more » « less
  4. The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins. 
    more » « less
  5. R-loops are abundant three-stranded nucleic-acid structures that formin cisduring transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mechanical equilibrium model of R-loop formation in superhelical DNA. In this model, the energy involved in forming an R-loop includes four terms—junctional and base-pairing energies and energies associated with superhelicity and with the torsional winding of the displaced DNA single strand around the RNA:DNA hybrid. This model shows that the significant energy barrier imposed by the formation of junctions can be overcome in two ways. First, base-pairing energy can favor RNA:DNA over DNA:DNA duplexes in favorable sequences. Second, R-loops, by absorbing negative superhelicity, partially or fully relax the rest of the DNA domain, thereby returning it to a lower energy state. In vitro transcription assays confirmed that R-loops cause plasmid relaxation and that negative superhelicity is required for R-loops to form, even in a favorable region. Single-molecule R-loop footprinting following in vitro transcription showed a strong agreement between theoretical predictions and experimental mapping of stable R-loop positions and further revealed the impact of DNA topology on the R-loop distribution landscape. Our results clarify the interplay between base sequence and DNA superhelicity in controlling R-loop stability. They also reveal R-loops as powerful and reversible topology sinks that cells may use to nonenzymatically relieve superhelical stress during transcription.

     
    more » « less