The origins of the upper branch of the Atlantic meridional overturning circulation (AMOC) are traced with backward‐in‐time Lagrangian trajectories, quantifying the partition of volume transport between different routes of entry from the Indo‐Pacific into the Atlantic. Particles are advected by the velocity field from a recent release of “Estimating the Circulation and Climate of the Ocean” (ECCOv4). This global time‐variable velocity field is a dynamically consistent interpolation of over 1 billion oceanographic observations collected between 1992 and 2015. Of the 13.6 Sverdrups (1 Sv =
The origins of the upper limb of the Atlantic meridional overturning circulation and the partition among different routes has been quantified with models at eddy-permitting and one eddy-resolving model or with low-resolution models assimilating observations. Here, a step toward bridging this gap is taken by using the Southern Ocean State Estimate (SOSE) at the eddy-permitting 1/6° horizontal resolution to compute Lagrangian diagnostics from virtual particle trajectories advected between 6.7°S and two meridional sections: one at Drake Passage (cold route) and the other from South Africa to Antarctica (warm route). Our results agree with the prevailing concept attributing the largest transport contribution to the warm route with 12.3 Sv (88%) (1 Sv ≡ 106m3s−1) compared with 1.7 Sv (12%) for the cold route. These results are compared with a similar Lagrangian experiment performed with the lower-resolution state estimate from Estimating the Circulation and Climate of the Ocean. Eulerian and Lagrangian means highlight an overall increase in the transport of the major South Atlantic currents with finer resolution, resulting in a relatively larger contribution from the cold route. In particular, the Malvinas Current to Antarctic Circumpolar Current (MC/ACC) ratio plays a more important role on the routes partition than the increased more »
- Award ID(s):
- 1924388
- Publication Date:
- NSF-PAR ID:
- 10390873
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 53
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 215-233
- ISSN:
- 0022-3670
- Publisher:
- American Meteorological Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 106 m3 /s) flowing northward across 6°S, 15% enters the Atlantic from Drake Passage, 35% enters from the straits between Asia and Australia (Indonesian Throughflow), and 49% comes from the region south of Australia (Tasman Leakage). Because of blending in the Agulhas region, water mass properties in the South Atlantic are not a good indicator of origin. -
The Antarctic Circumpolar Current (ACC), the world’s strongest zonal current system, connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and is constricted to its narrowest extent in the Drake Passage. Fresh and cold Pacific surface and intermediate water flowing through the Drake Passage (cold-water route) and warm Indian Ocean water masses flowing through the Agulhas region (warm-water route) are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. Furthermore, physical and biological processes associated with the ACC affect the strength of the ocean carbon pump and therefore are critical to feedbacks linking atmospheric CO2 concentrations, ocean circulation, and climate/cryosphere on a global scale. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, there are no deep-sea drilling paleoceanographic records from the Pacific sector of the ACC. To advance our understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program Expedition 383 recovered sedimentary sequences atmore »
-
The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affects the Atlantic Meridional Overturning Circulation together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, the Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from deep-sea drilling records. To advance our knowledge and understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program (IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the central South Pacific (U1539, U1540, and U1541), (2) two sites at the Chile marginmore »
-
The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. Themore »
-
Abstract High sea surface chlorophyll concentration on the Argentine Continental Shelf frequently extends to the deep ocean in the vicinity of the Brazil/Malvinas Confluence (BMC). The offshore transport of shelf waters likely plays a key role in the biogeochemical balance of the western South Atlantic and promotes the offshore transport of planktonic species. We analyze data from an oceanographic survey carried out in the western South Atlantic shelf between 31°S and 38°S in October 2013. We describe the distribution and circulation of the water masses and focus on the exchanges with the open ocean. On‐shelf subsurface intrusions of oceanic waters and river discharge supply nutrients to the shelf. A low‐salinity tongue of Río de la Plata (RDP) waters extends northward to 32°S. Below these waters Subantarctic and Subtropical Shelf Waters (SASW and STSW) meet to form the Subtropical Shelf Front. The main SASW branch, oversaturated in oxygen and with high‐fluorescence mixes with a detachment of Brazil Current waters at 38°S and is exported offshore along the BMC. A second branch of SASW reaches 33°S mixing along its way with RDP and STSW and returns southward after splitting into an onshore and an offshore branch. The offshore branch is exported tomore »