skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sustained Heating of the Chromosphere and Transition Region Over a Sunspot Light Bridge
Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg).  more » « less
Award ID(s):
2230633 2050340
PAR ID:
10390909
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
942
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 62
Size(s):
Article No. 62
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a magnetic relaxation process inside a sunspot associated with the evolution of a transient light bridge (LB). From high-resolution imaging and spectro-polarimetric data taken by the 1.6 m Goode Solar Telescope installed at Big Bear Solar Observatory, we observe the evolutionary process of a rapidly evolving LB. The LB is formed as a result of the strong intrusion of filamentary structures with relatively horizontal fields into the vertical umbral field region. A strong current density is detected along a localized region where the magnetic field topology changes rapidly in the sunspot, especially in the boundary region between the LB and the umbra, and bright jets are observed intermittently and repeatedly in the chromosphere along this region through magnetic reconnection. In the second half of our observation, the horizontal component of the magnetic field diminishes within the LB, and the typical convection structure within the sunspot, which manifests itself as umbral dots, is restored. Our findings provide a comprehensive perspective not only on the evolution of an LB itself but also on its impacts in the neighboring regions, including the chromospheric activity and the change of magnetic energy of a sunspot. 
    more » « less
  2. Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection. 
    more » « less
  3. Abstract To facilitate the study of solar flares and active regions, we have created a modeling framework, the freely distributed GX Simulator IDL package, that combines 3D magnetic and plasma structures with thermal and nonthermal models of the chromosphere, transition region, and corona. Its object-based modular architecture, which runs on Windows, Mac, and Unix/Linux platforms, offers the ability to either import 3D density and temperature distribution models, or to assign numerically defined coronal or chromospheric temperatures and densities, or their distributions, to each individual voxel. GX Simulator can apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel, as well as compute and investigate the spatial and spectral properties of radio, (sub)millimeter, EUV, and X-ray emissions calculated from the model, and quantitatively compare them with observations. The package includes a fully automatic model production pipeline that, based on minimal users input, downloads the required SDO/HMI vector magnetic field data, performs potential or nonlinear force-free field extrapolations, populates the magnetic field skeleton with parameterized heated plasma coronal models that assume either steady-state or impulsive plasma heating, and generates non-LTE density and temperature distribution models of the chromosphere that are constrained by photospheric measurements. The standardized models produced by this pipeline may be further customized through specialized IDL scripts, or a set of interactive tools provided by the graphical user interface. Here, we describe the GX Simulator framework and its applications. 
    more » « less
  4. Context.The elemental abundance in the solar corona differs from that in the photosphere, with low first ionization potential (FIP) elements showing enhanced abundances, a phenomenon known as the FIP effect. This effect is considered to be driven by ponderomotive forces associated with magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Aims.We aim to investigate the relationship between coronal abundance fractionation and transverse MHD waves in the chromosphere. We focus on analyzing the spatial correlation between the FIP fractionation and these waves, while exploring wave properties to validate the ponderomotive-force-driven fractionation model. Methods.We analyzed the Hαdata from the Fast Imaging Solar Spectrograph of the Goode Solar Telescope to detect chromospheric transverse MHD waves, and Si X(low FIP) and S X(high FIP) spectra from the EUV Imaging Spectrometer on board Hinode to determine the relative abundance in an active region. By extrapolating linear-force-free magnetic fields with Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms, we examine the connection between chromospheric waves and coronal composition. Around 400 wave packets were identified, and their properties, including the period, velocity amplitude, propagation speed, and propagation direction, were studied. Results.These chromospheric transverse MHD waves, mostly incompressible or weakly compressible, are found near loop footpoints, particularly in the sunspot penumbra and superpenumbral fibrils. The highly fractionated coronal region is associated with areas where these waves were detected within closed magnetic fields. Our examination of the statistics of wave properties revealed that downward-propagating low-frequency waves are particularly prominent, comprising about 43% of the detected waves. Conclusions.The correlation between abundance fractionation and transverse MHD waves, along with wave properties, supports the hypothesis that FIP fractionation occurs due to the ponderomotive force from transverse MHD waves in the chromosphere. Additionally, the observed characteristics of these chromospheric waves provide valuable observational constraints for understanding the FIP fractionation process. 
    more » « less
  5. Context. The inverse Evershed flow (IEF) is a mass motion towards sunspots at chromospheric heights. Aims. We combined high-resolution observations of NOAA 12418 from the Dunn Solar Telescope and vector magnetic field measurements from the Helioseismic and Magnetic Imager (HMI) to determine the driver of the IEF. Methods. We derived chromospheric line-of-sight (LOS) velocities from spectra of H α and Ca  II IR. The HMI data were used in a non-force-free magnetic field extrapolation to track closed field lines near the sunspot in the active region. We determined their length and height, located their inner and outer foot points, and derived flow velocities along them. Results. The magnetic field lines related to the IEF reach on average a height of 3 megameter (Mm) over a length of 13 Mm. The inner (outer) foot points are located at 1.2 (1.9) sunspot radii. The average field strength difference Δ B between inner and outer foot points is +400 G. The temperature difference Δ T is anti-correlated with Δ B with an average value of −100 K. The pressure difference Δ p is dominated by Δ B and is primarily positive with a driving force towards the inner foot points of 1.7 kPa on average. The velocities predicted from Δ p reproduce the LOS velocities of 2–10 km s −1 with a square-root dependence. Conclusions. We find that the IEF is driven along magnetic field lines connecting network elements with the outer penumbra by a gas pressure difference that results from a difference in field strength as predicted by the classical siphon flow scenario. 
    more » « less