Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Ca
- Publication Date:
- NSF-PAR ID:
- 10390909
- Journal Name:
- The Astrophysical Journal
- Volume:
- 942
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 62
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeatedmore »
-
Context. Resistive Ohmic dissipation has been suggested as a mechanism for heating the solar chromosphere, but few studies have established this association. Aims. We aim to determine how Ohmic dissipation by electric currents can heat the solar chromosphere. Methods. We combine high-resolution spectroscopic Ca II data from the Dunn Solar Telescope and vector magnetic field observations from the Helioseismic and Magnetic Imager (HMI) to investigate thermal enhancements in a sunspot light bridge. The photospheric magnetic field from HMI was extrapolated to the corona using a non-force-free field technique that provided the three-dimensional distribution of electric currents, while an inversion of the chromospheric Ca II line with a local thermodynamic equilibrium and a nonlocal thermodynamic equilibrium spectral archive delivered the temperature stratifications from the photosphere to the chromosphere. Results. We find that the light bridge is a site of strong electric currents, of about 0.3 A m −2 at the bottom boundary, which extend to about 0.7 Mm while decreasing monotonically with height. These currents produce a chromospheric temperature excess of about 600−800 K relative to the umbra. Only the light bridge, where relatively weak and highly inclined magnetic fields emerge over a duration of 13 h, shows a spatial coincidencemore »
-
Context. Solar observations of carbon monoxide (CO) indicate the existence of lower-temperature gas in the lower solar chromosphere. We present an observation of pores, and quiet-Sun, and network magnetic field regions with CO 4.66 μm lines by the Cryogenic Infrared Spectrograph (CYRA) at Big Bear Solar Observatory. Aims. We used the strong CO lines at around 4.66 μm to understand the properties of the thermal structures of lower solar atmosphere in different solar features with various magnetic field strengths. Methods. Different observations with different instruments were included: CO 4.66 μm imaging spectroscopy by CYRA, Atmospheric Imaging Assembly (AIA) 1700 Å images, Helioseismic and Magnetic Imager (HMI) continuum images, line-of-sight (LOS) magnetograms, and vector magnetograms. The data from 3D radiation magnetohydrodynamic (MHD) simulation with the Bifrost code are also employed for the first time to be compared with the observation. We used the Rybicki-Hummer (RH) code to synthesize the CO line profiles in the network regions. Results. The CO 3-2 R14 line center intensity changes to be either enhanced or diminished with increasing magnetic field strength, which should be caused by different heating effects in magnetic flux tubes with different sizes. We find several “cold bubbles” in the CO 3-2 R14more »
-
Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME.more »
-
Abstract Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST He
i λ 10830 line, as well as broad and centrally reversed profiles in the spectra of the Mgii and Cii lines observed by the IRIS satellite, has been reported. In this work, we aim to understand the physical origin of such peculiar IRIS profiles, which seem to be common of many, if not all, flares. To achieve this, we quantify the spectral properties of the IRIS Mgii profiles at the ribbon leading edge during four large flares and perform a detailed comparison with a grid of radiative hydrodynamic models using theRADYN+FP code. We also studied their transition region (TR) counterparts, finding that these ribbon front locations are regions where TR emission and chromospheric evaporation are considerably weaker compared to other parts of the ribbons. Based on our comparison between the IRIS observations and modeling, our interpretation is that there are different heating regimes at play in the leading edge and the main bright part of the ribbons. More specifically, we suggest that bombardment of the chromosphere by more gradual and modest nonthermal electron energy fluxes can qualitatively explain themore »