skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Deep learning for neural decoding in motor cortex
Abstract Objective . Neural decoding is an important tool in neural engineering and neural data analysis. Of various machine learning algorithms adopted for neural decoding, the recently introduced deep learning is promising to excel. Therefore, we sought to apply deep learning to decode movement trajectories from the activity of motor cortical neurons. Approach . In this paper, we assessed the performance of deep learning methods in three different decoding schemes, concurrent, time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the network is the neural activity coincidental to the movement, deep learning networks including artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode movement and compared with traditional machine learning algorithms. Both ANN and LSTM were further evaluated in the time-delay decoding scheme in which temporal delays are allowed between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained convolutional neural network (CNN) to extract movement information from images representing the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal network. To reveal the input features of the CNN in the hybrid network that deep learning discovered for movement decoding, we performed a sensitivity analysis and identified specific regions in the spatial domain. Main results . Deep learning networks (ANN and LSTM) outperformed traditional machine learning algorithms in the concurrent decoding scheme. The results of ANN and LSTM in the time-delay decoding scheme showed that including neural data from time points preceding movement enabled decoders to perform more robustly when the temporal relationship between the neural activity and movement dynamically changes over time. In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the concurrent ANN decoder outperformed single-network concurrent decoders. Significance . Taken together, our study demonstrates that deep learning could become a robust and effective method for the neural decoding of behavior.  more » « less
Award ID(s):
1940162 1939992 1939999
PAR ID:
10391003
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Neural Engineering
Volume:
19
Issue:
5
ISSN:
1741-2560
Page Range / eLocation ID:
056021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significance: The performance of traditional approaches to decoding movement intent from electromyograms (EMGs) and other biological signals commonly degrade over time. Furthermore, conventional algorithms for training neural network-based decoders may not perform well outside the domain of the state transitions observed during training. The work presented in this paper mitigates both these problems, resulting in an approach that has the potential to substantially he quality of live of people with limb loss. Objective: This paper presents and evaluates the performance of four decoding methods for volitional movement intent from intramuscular EMG signals. Methods: The decoders are trained using dataset aggregation (DAgger) algorithm, in which the training data set is augmented during each training iteration based on the decoded estimates from previous iterations. Four competing decoding methods: polynomial Kalman filters (KFs), multilayer perceptron (MLP) networks, convolution neural networks (CNN), and Long-Short Term Memory (LSTM) networks, were developed. The performance of the four decoding methods was evaluated using EMG data sets recorded from two human volunteers with transradial amputation. Short-term analyses, in which the training and cross-validation data came from the same data set, and long-term analyses training and testing were done in different data sets, were performed. Results: Short-term analyses of the decoders demonstrated that CNN and MLP decoders performed significantly better than KF and LSTM decoders, showing an improvement of up to 60% in the normalized mean-square decoding error in cross-validation tests. Long-term analysis indicated that the CNN, MLP and LSTM decoders performed significantly better than KF-based decoder at most analyzed cases of temporal separations (0 to 150 days) between the acquisition of the training and testing data sets. Conclusion: The short-term and long-term performance of MLP and CNN-based decoders trained with DAgger, demonstrated their potential to provide more accurate and naturalistic control of prosthetic hands than alternate approaches. 
    more » « less
  2. In this paper, we analyze applicability of singleand two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense. 
    more » « less
  3. Accurately decoding external variables from observations of neural activity is a major challenge in systems neuroscience. Bayesian decoders, that provide probabilistic estimates, are some of the most widely used. Here we show how, in many common settings, the probabilistic predictions made by traditional Bayesian decoders are overconfident. That is, the estimates for the decoded stimulus or movement variables are more certain than they should be. We then show how Bayesian decoding with latent variables, taking account of low-dimensional shared variability in the observations, can improve calibration, although additional correction for overconfidence is still needed. Using data from males, we examine: 1) decoding the direction of grating stimuli from spike recordings in primary visual cortex in monkeys, 2) decoding movement direction from recordings in primary motor cortex in monkeys, 3) decoding natural images from multi-region recordings in mice, and 4) decoding position from hippocampal recordings in rats. For each setting we characterize the overconfidence, and we describe a possible method to correct miscalibration post-hoc. Properly calibrated Bayesian decoders may alter theoretical results on probabilistic population coding and lead to brain machine interfaces that more accurately reflect confidence levels when identifying external variables. Significance Statement Bayesian decoding is a statistical technique for making probabilistic predictions about external stimuli or movements based on recordings of neural activity. These predictions may be useful for robust brain machine interfaces or for understanding perceptual or behavioral confidence. However, the probabilities produced by these models do not always match the observed outcomes. Just as a weather forecast predicting a 50% chance of rain may not accurately correspond to an outcome of rain 50% of the time, Bayesian decoders of neural activity can be miscalibrated as well. Here we identify and measure miscalibration of Bayesian decoders for neural spiking activity in a range of experimental settings. We compare multiple statistical models and demonstrate how overconfidence can be corrected. 
    more » « less
  4. Abstract—As wireless communication systems strive to improve spectral efficiency, there has been a growing interest in employing machine learning (ML)-based approaches for adaptive modulation and coding scheme (MCS) selection. In this paper, we introduce a new adaptive MCS selection framework for massive MIMO systems that operates without any feedback from users by solely relying on instantaneous uplink channel estimates. Our proposed method can effectively operate in multi-user scenarios where user feedback imposes excessive delay and bandwidth overhead. To learn the mapping between the user channel matrices and the optimal MCS level of each user, we develop a Convolutional Neural Network (CNN)-Long Short-Term Memory Network (LSTM)-based model and compare the performance with the state-of-the-art methods. Finally, we validate the effectiveness of our algorithm by evaluating it experimentally using real-world datasets collected from the RENEW massive MIMO platform. Index Terms—Adaptive MCS Selection, Machine Learning, Convolutional Neural Network, Long Short-Term Memory Network, Channel State Information, Feedback Delay. 
    more » « less
  5. Federated learning allows edge devices to collaboratively learn a shared model while keeping the training data on device, decoupling the ability to do model training from the need to store the data in the cloud. We propose the Federated matched averaging (FedMA) algorithm designed for federated learning of modern neural network architectures e.g. convolutional neural networks (CNNs) and LSTMs. FedMA constructs the shared global model in a layer-wise manner by matching and averaging hidden elements (i.e. channels for convolution layers; hidden states for LSTM; neurons for fully connected layers) with similar feature extraction signatures. Our experiments indicate that FedMA not only outperforms popular state-of-the-art federated learning algorithms on deep CNN and LSTM architectures trained on real world datasets, but also reduces the overall communication burden. 
    more » « less